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“Efficient” modeling: Elimination of conductors from 
solution domain via surface impedance 
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• definition of surface impedance: 
“standard” surface impedance 
boundary condition (SIBC)
– surface current such that 

interior fields are exactly zero
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Utility of surface impedance BCs

• simplifies problem only if known a priori
– how well can the boundary condition be approximated?
– most common approximation for SIBC: 

• valid only at high frequency where E/H is a local 
property

• requires conductor dimensions >> skin depth
– fails at “low” frequency and when line-to-line coupling is 

strong
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•  “effective” internal impedance 
boundary condition (EII)

– interior of conductor 
replaced with non-
conducting exterior medium

– interior magnetic field is not 
identically zero
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Alternative definition of conductor surface 
impedance: EII

• “effective” internal impedance boundary condition (EII)

– Ez  and Htext from the solution of

– Htin from the solution of

• utility of impedance boundary condition determined by how easily it 
can be approximated
– isolated conductor impedance is easier to estimate than coupled 

line surface impedance
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Surface impedance comparisons

• simple circular twin lead
• all tend to 1/σδ at high frequency
• EII well approximated by isolated conductor surface 

impedance at low frequency
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Dependence on coupling

• normalized to magnitude of isolated conductor surface 
impedance

• 2 mm radius circular conductors
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Circular twin lead comparisons

• techniques used
– boundary element 

method (BEM)
– “surface ribbon” 

technique (SRM)
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Zeii

Zeii
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• decompose bar into rectangular 
and square sections
• central rectangular regions: 
simple skin depth in "flat" plate

• corner regions: decompose t/2 
corner into N triangles

– exact dc resistance in limit of 
N large
– high frequency behavior 

• effective thickness > t/2, 
current crowds toward 
"corner" at lower frequency

EII approximations for rectangular conductors : 
"Transmission line" model
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Surface ribbon method for rectangular 
“twin lead”

minimum ribbons:
• at most five ribbons used for 

“wide” faces
• one ribbon used for “narrow” 

faces
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Applications: Minimum ribbon segmentation for
coupled microstrip over finite ground plane
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• signal lines : 4 segments each signal line 
(one per face)

• ground plane : 7 ~ 9 segments
• unknowns - VFM : 492 ;  SRM : 15
• run time - VFM : 39 sec;  SRM : 0.023 sec
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Effects of the frequency dependencies on 
time domain waveforms

• line 1 excited with 0.1ns 
rise and fall time

• measured  far end of 
line 4 (length=0.1 m)

• RS= 5 Ohm, CL= 10 pF
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• must include both 
R and L 
dependence on 
frequency / time
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Time domain simulation using surface impedance 
BCs

• conventional approach: convert surface impedance 
from frequency domain to time domain
– can use Prony’s method or Chebyshev approximation to 

find time domain exponential form
• tends to produce many terms

• alternative: use compact ladder circuit to formulate 
time domain surface impedance boundary 
condition
– use circuit to determine time domain exponential form
– leads to time domain formulation very similar to lossless 

result
• matrix containing finite conductivity effects is time 

independent, requires inversion only once
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Equivalent circuit modeling for EII: transforming 
frequency domain EII into time domain

• each “isolated conductor” cross-section 
divided into 4 parts

• each part represented with 1 resistor and 1 
inductor

• rules to determine values of circuit elements:

- additional constraints: correct DC  
resistance and inductance

- RR and LL are empirically determined 
constants unique to the geometry of the 
conductor
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Compact circuit model as a replacement 
for the EII

• constraints generate:

•  p is the conductor depth parameter, C1 and C2 depend on 
geometry:
– triangle for corners: p = height, C1 = 0.56, C2 = 0.315
– half plate for mid regions: p = thickness, C1 = 10.8, C2 = 0.2
– circular conductors: p = r, C1 = 0.53, C2 = 0.315

• ladder values completely determined for each ribbon on 
conductor surface
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Time domain conversion using equivalent circuit 
model

• equivalent circuit model

- can be easily constructed

- rational function in s-domain, 
exponential function in time 
domain

- problem size can be reduced 
using Pade approximation: 
dominant pole reduction

- time domain convolution 
problem can be solved using 
recursive properties blue: numerical result

red: circuit model

1x102

1x103

1x104

1x107 1x108 1x109 1x1010 1x1011
Z

(s
)

s

triangle

plate

10  µm

5
µm

20 µm

5 µm



 D. Neikirk D. Neikirk
Darpa Electronic Packaging and Darpa Electronic Packaging and 

Interconnect Design and Test ProgramInterconnect Design and Test Program

The University of Texas at AustinThe University of Texas at AustinMicroelectromagnetic Devices GroupMicroelectromagnetic Devices Group

18 DARPA

Derivation of time domain equation

• frequency domain (s-domain) 
equation

• transformation into time domain

• time domain convolution
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• lossless like equation with 
additional voltage source

• voltage source depends on poles, 
residues, time step, and values from 
previous time step

• different simulators can be used to 
solve equations
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Example I: time stepping solution (FDTD)
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• make finite difference approximation to the partial derivatives: extra 
current source compared to lossless case

•  each voltage and adjacent current solution point separated by ∆z/2
•  ∆t has to be kept small to satisfy stability condition:  may not be 

appropriate for electrically long lines
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EII/Circuit approximation in FDTD

• test case geometry: two 20µm square microstrip lines, 30µm 
pitch, all conductivities finite

– 10cm length, 5Ω source impedance, 50Ω load

• comparisons
– finite difference time domain method using EII circuit derived BC
– FFT using frequency domain dispersion curve

• conventional current filament method (FM)
• surface ribbon method (SRM)

– simple RLC transmission line model (no skin effect)
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Driven and victim line comparisons

method pre-
calculation

main calculation
(FDTD or FFT)

SRM-FDTD 0.5 sec 89.5 sec

SRM-FFT 149 sec 0.5 sec

FM-FFT 163,095 sec 0.5 sec

victim line

• single input pulse, 
0.1nsec rise & fall 
times, 1nsec on time
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Example II: method of characteristics (MC)
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• Branin (1967) for single lossless line, Ho (1973) for multi-lossless 
lines, Gruodis (1979) for multi-resistive lines(R-L-C)

•  objective:  estimate waveform by applying Ho’s method to lossless- 
like equation with similar efficiency as R-L-C circuit analysis

•  represent waveform as combination of incident and reflected wave
•  needs additional segmentation to include effect of distributed 

resistance
•  additional voltage source needed for skin effect model 
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Four lines via method of characteristics
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• line 1 excited, RS=5 Ohm, CL=10 pF
•  run time comparison on Pentium II

– SRM + MC: 7.6 sec
– SRM + FFT: 283 sec

blue: FFT, red: MC
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• finite conductivity produces frequency dependent 
inductance and resistance 

– important for accurate loss or cross-talk modeling

• effective internal impedance and the surface ribbon 
method for dispersive R & L calculation

– excellent approximation from dc to high frequency
– numerically very efficient
– applicable to n-conductor and 3-D systems

• small,  frequency-independent R-L ladders can 
provide excellent equivalent circuit for frequency 
dependencies

• very efficient time domain conductor boundary 
condition demonstrated 

Efficient interconnect modeling from dc to 
the skin effect


