EE 363M Spring 2000, Homework Set 1, Fri. Feb. 4; Due: Fri. Feb. 11

1. (5 pts) Recalling that $V = V_+ + V_-$, $I = I_+ + I_-$, $Z_o = \frac{V_+}{I_+} = -\frac{V_-}{I_-}$, and $Y_o = 1/Z_o$,

show that:

$$V_{+} = \frac{V + I \cdot Z_{0}}{2}$$
 $V_{-} = \frac{V - I \cdot Z_{0}}{2}$ $I_{+} = \frac{I + V \cdot Y_{0}}{2}$ $I_{-} = \frac{I - V \cdot Y_{0}}{2}$

2. (10 pts) A pulse generator with internal impedance 50 Ω is connected to the transmission line arrangement shown below. When the generator is turned on it begins sending voltage pulses down the line, one pulse every 20nsec.

Use the following notation:

- ρ = reflection coefficient for waves incident from a 50 Ω section to a 150 Ω section
- T = transmission coefficient from a 50 $\,\Omega$ section to a 150 $\,\Omega$ one
- ho' = reflection coefficient from a 150 Ω section to a 50 Ω one
- $T^{\,\prime}$ = transmission coefficient from a 150 $\,\Omega$ section to a 50 Ω one
- V_{+1} = forward pulse voltage amplitude in section i

 V_{-1} = backward pulse voltage amplitude in section i

At t = 0 the first pulse sent from the generator is at interface A. If the pulses sent from the generator have height V_{+1} , what is V_{+2} at:

t = 5 nsect = 25 nsect = 35 nsect = 45 nsec

in steady state (i.e. $t = \infty$) ? In steady state, what are V₊₃ and V₋₁?

3. (5 pts) To find the phasor form for the voltage and current along a transmission line (i.e., the Telegraphist's equations in "time harmonic form") you can replace Π/Π t by j ω in:

$$\frac{\P V}{\P z} = -L \frac{\P I}{\P t} \qquad \qquad \frac{\P I}{\P z} = -C \frac{\P V}{\P t}$$

Make this substitution and show that

$$V = V_{+} e^{-j bz} + V_{-} e^{j bz}$$
 $I = \frac{1}{Z_{0}} \left[V_{+} e^{-j bz} - V_{-} e^{j bz} \right]$

are solutions to the Telegraphist's equations so long as $b = w \sqrt{LC}$. [Problem taken from Ramo, problem 5.7a (5.5a in 2nd ed.)]

4. (5 pts) For a transmission line "terminated" at z = 0 by a load impedance Z $_{\rm L}$ and recalling:

$$Z_{o} = \frac{V_{+}}{I_{+}} = -\frac{V_{-}}{I_{-}} \quad , \quad \rho(z=-1) = \frac{V_{-} \cdot exp(-j\beta 1)}{V_{+} \cdot exp(j\beta 1)} \quad , \quad Z(z=-1) = \frac{V}{I} = \frac{V_{+} \cdot exp(j\beta 1) + V_{-} \cdot exp(-j\beta 1)}{I_{+} \cdot exp(j\beta 1) + I_{-} \cdot exp(-j\beta 1)}$$

show that

$$Z(z=-1) = Z_{o} \frac{1+\rho(z=0) \exp(-j 2\beta 1)}{1-\rho(z=0) \exp(-j 2\beta 1)} = Z_{o} \frac{Z_{L} + Z_{o} \cdot \tanh(j \beta 1)}{Z_{o} + Z_{L} \cdot \tanh(j \beta 1)} = Z_{o} \frac{Z_{L} + j Z_{o} \tan(\beta 1)}{Z_{o} + j Z_{L} \tan(\beta 1)}$$