1. (5 pts) Recalling that $V=V_{+}+V_{-}, I=I_{+}+I_{-}, Z_{o}=\frac{V_{+}}{I_{+}}=-\frac{V_{-}}{I_{-}}$, and $Y_{o}=1 / Z_{o}$,
show that:

$$
\mathrm{V}_{+}=\frac{\mathrm{V}+\mathrm{I} \cdot \mathrm{Z}_{0}}{2} \quad \mathrm{~V}_{-}=\frac{\mathrm{V}-\mathrm{I} \cdot \mathrm{Z}_{0}}{2} \quad \mathrm{I}_{+}=\frac{\mathrm{I}+\mathrm{V} \cdot \mathrm{Y}_{0}}{2} \quad \mathrm{I}_{-}=\frac{\mathrm{I}-\mathrm{V} \cdot \mathrm{Y}_{0}}{2}
$$

2. (10 pts) A pulse generator with internal impedance 50Ω is connected to the transmission line arrangement shown below. When the generator is turned on it begins sending voltage pulses down the line, one pulse every 20 nsec .

Use the following notation:
$\rho=$ reflection coefficient for waves incident from a 50Ω section to a 150Ω section
$\mathrm{T}=$ transmission coefficient from a 50Ω section to a 150Ω one
$\rho^{\prime}=$ reflection coefficient from a 150Ω section to a 50Ω one
$\mathrm{T}^{\prime}=$ transmission coefficient from a 150Ω section to a 50Ω one
$V_{+i}=$ forward pulse voltage amplitude in section i
$V_{-i}=$ backward pulse voltage amplitude in section i
At $t=0$ the first pulse sent from the generator is at interface A.
If the pulses sent from the generator have height $V+1$, what is $V+2$ at:
$\mathrm{t}=5 \mathrm{nsec}$
$\mathrm{t}=25 \mathrm{nsec}$
$\mathrm{t}=35 \mathrm{nsec}$
$\mathrm{t}=45 \mathrm{nsec}$
in steady state (i.e. $t=\infty$) ?
In steady state, what are $\mathrm{V}+3$ and $\mathrm{V}-1$?
3. (5 pts) To find the phasor form for the voltage and current along a transmission line (i.e., the Telegraphist's equations in "time harmonic form") you can replace $\partial / \partial t$ by $j \omega$ in:

$$
\frac{\partial \mathrm{V}}{\partial \mathrm{z}}=-\mathrm{L} \frac{\partial \mathrm{I}}{\partial \mathrm{t}} \quad \frac{\partial \mathrm{I}}{\partial \mathrm{z}}=-\mathrm{C} \frac{\partial \mathrm{~V}}{\partial \mathrm{t}}
$$

Make this substitution and show that

$$
V=V_{+} e^{-j \beta z}+V_{-} e^{j \beta z} \quad I=\frac{1}{Z_{o}}\left[V_{+} e^{-j \beta z}-V_{-} e^{j \beta z}\right]
$$

are solutions to the Telegraphist's equations so long as $\beta=\omega \sqrt{\mathrm{LC}}$.
[Problem taken from Ramo, problem 5.7a (5.5a in 2nd ed.)]
4. (5 pts) For a transmission line "terminated" at $z=0$ by a load impedance Z and recalling:
$Z_{0}=\frac{V_{+}}{I_{+}}=-\frac{V_{-}}{I_{-}}, \rho(z=-1)=\frac{V_{-} \cdot \exp (-j \beta 1)}{V_{+} \cdot \exp (j \beta 1)}, Z(z=-1)=\frac{V}{I}=\frac{V_{+} \cdot \exp (j \beta 1)+V_{-} \cdot \exp (-j \beta 1)}{I_{+} \cdot \exp (j \beta 1)+I_{-} \cdot \exp (-j \beta 1)}$
show that

$$
Z(z=-1)=Z_{o} \frac{1+\rho(z=0) \cdot \exp (-j 2 \beta 1)}{1-\rho(z=0) \cdot \exp (-j 2 \beta 1)}=Z_{o} \frac{Z_{L}+Z_{o} \cdot \tanh (j \beta 1)}{Z_{o}+Z_{L} \cdot \tanh (j \beta l)}=Z_{o} \frac{Z_{L}+j Z_{o} \tan (\beta 1)}{Z_{o}+j Z_{L} \tan (\beta 1)}
$$

