EE 363M Spring 2000
Homework Set 4
Wed. March. 22
Due: Wed. March 29

1. (5 pts) Recall that for a TEM to z wave:

$$
\frac{\partial \mathrm{E}_{\mathrm{y}}}{\partial \mathrm{x}}-\frac{\partial \mathrm{E}_{\mathrm{x}}}{\partial \mathrm{y}}=0 \quad \frac{\partial \mathrm{H}_{\mathrm{y}}}{\partial \mathrm{x}}-\frac{\partial \mathrm{H}_{\mathrm{x}}}{\partial \mathrm{y}}=0 \quad \overrightarrow{\mathrm{H}}_{+}=\frac{1}{\eta}\left(\hat{\mathrm{z}} \times \overrightarrow{\mathrm{E}}_{+}\right) \quad \overrightarrow{\mathrm{H}}_{-}=-\frac{1}{\eta}\left(\hat{\mathrm{z}} \times \overrightarrow{\mathrm{E}}_{-}\right)
$$

Assume that $\mathbf{E} \| \mathbf{x}$ throughout the $x-y$ plane (i.e., that $E_{y} \equiv 0$ everywhere). Using the relations above show:
a) E_{X} is not a function of y
b) \mathbf{H} as a function of \mathbf{E} (write out the x and y vector components separately)
c) H_{y} is not a function of x
d) E_{X} is not a function of x

A wave TEM to z which has no field variations in the $x-y$ plane is called a uniform plane wave.
2. (10 pts) A common transmission line is the coaxial cable shown in cross -section below. The radius of the inner conductor is a, and the cylindrical hole is of radius b. The cavity between the conductors is filled with a dielectric with $\varepsilon=\varepsilon_{r} \varepsilon_{0}$ and $\mu=\mu_{0}$. The outer conductor is held at ground potential (i.e. V = 0), while the inner conductor is connected to a voltage generator which applies a signal V o $e^{j \omega t}$. You will find it most convenient to work in cylindrical coordinates (see summa ry notes below).

a) Find the electric field as a function of radial distance ρ (i.e., $\mathbf{E}(\rho)$, which will be the same as the static field in this TEM line). Use Gauss's law and show your work.
b) Verify that for this \mathbf{E} field
$\frac{\partial E_{y}}{\partial x}-\frac{\partial E_{x}}{\partial y}=0$
c) For a TEM wave on this line, what is the H field? Remember for a TEM wave once you have \mathbf{E} its easy to get \mathbf{H} ! Verify that
$\frac{\partial \mathrm{H}_{\mathrm{y}}}{\partial \mathrm{x}}-\frac{\partial \mathrm{H}_{\mathrm{x}}}{\partial \mathrm{y}}=0$
d) Find the capacitance per unit length C for this line.
e) What is the inductance per unit length L ?
f) Find Z_{o} for this transmission line.

Note that on this line you have a TEM to z wave, that it would be considered a plane wave, but it is not a uniform plane wave.

Notes on cylindrical coords:

In the $x-y$ plane:

point (x,y,z) is located by

$$
\overrightarrow{\mathrm{R}}=\mathrm{x} \cdot \hat{\mathrm{x}}+\mathrm{y} \cdot \hat{\mathrm{y}}+\mathrm{z} \cdot \hat{\mathrm{z}}
$$

or by
$\vec{R}=\rho \cdot \hat{\rho}+z \cdot \hat{z}$
where $\rho=\left(x^{2}+y^{2}\right)^{1 / 2}$,
and $\hat{\rho}=\cos \theta \hat{\mathbf{x}}+\sin \theta \hat{\mathbf{y}}$
Also recall: $\cos \theta=\frac{x}{\sqrt{x^{2}+y^{2}}}=\frac{x}{\rho}$ and
$\sin \theta=\frac{y}{\sqrt{x^{2}+y^{2}}}=\frac{y}{\rho}$
In addition to the $\hat{\rho}$ and $\hat{\mathbf{z}}$ directions, there is an orthoganol direction $\hat{\theta}$, given by

$$
\hat{\theta}=-\sin \theta \hat{\mathbf{x}}+\cos \theta \hat{\mathbf{y}}
$$

The following relations hold between the unit vectors:

$$
\hat{\rho} \times \hat{\theta}=\hat{z} \quad \hat{\theta} \times \hat{z}=\hat{\rho} \quad \hat{z} \times \hat{\rho}=\hat{\theta}
$$

3. (10 pts) Consider the basic T-line with series loss (i.e., $Z=R+j \omega L, Y=j \omega C$). For "low" frequencies (i.e., $\omega \ll R / L$), find the complex propagation constant $\gamma=\alpha+j \beta$. Sketch ω vs. β and ω vs. α diagrams (make sure to indicate over what range of ω 's your sketches are valid). Plot ω on the vertical axis, and β on the horizontal axis. Also find the phase velocity $v p$ and the group velocity $v g$ for this line, and sketch their behavior versus ω. Finally, find the "effective index of refraction" (also know as the "slow wave factor") which is defined as n eff $=\beta / \beta_{\circ}$, where $\beta_{\circ}=\omega \sqrt{L C}=\omega \sqrt{\mu_{\circ} \varepsilon_{\circ}}$; sketch its behavior versus ω.
4. (5 points) Ramo, problem 5.15c (5.12c 2nd ed.)

L

- Find the complex propagation constant $\gamma=\alpha+j \beta$ for this line.
- Sketch ω vs. β and ω vs. α diagrams (make sure to show behavior for large β).
- Find the phase and group velocities v_{p} and v_{g} sketch their behavior versus ω (make sure to show behavior for large ω).

