EE 363M Spring 2000 Homework Set 4 Wed. March. 22 Due: Wed. March 29

1. (5 pts) Recall that for a TEM to z wave:

$$\frac{\partial E_{y}}{\partial x} - \frac{\partial E_{x}}{\partial y} = 0 \qquad \frac{\partial H_{y}}{\partial x} - \frac{\partial H_{x}}{\partial y} = 0 \qquad \vec{H}_{+} = \frac{1}{\eta} \left(\hat{z} \times \vec{E}_{+} \right) \qquad \vec{H}_{-} = -\frac{1}{\eta} \left(\hat{z} \times \vec{E}_{-} \right)$$

Assume that E || x throughout the x-y plane (i.e., that E_y ≡ 0 everywhere). Using the relations above show: a) E_x is not a function of y b) H as a function of E (write out the x and y vector components separately) c) H_y is not a function of x d) E_x is not a function of x A wave TEM to z which has no field variations in the x-y plane is called a <u>uniform plane</u> wave.

2. (10 pts) A common transmission line is the coaxial cable shown in cross -section below. The radius of the inner conductor is *a*, and the cylindrical hole is of radius *b*. The cavity between the conductors is filled with a dielectric with $\varepsilon = \varepsilon_r \varepsilon_0$ and $\mu = \mu_0$. The outer conductor is held at ground potential (i.e. V = 0), while the inner conductor is connected to a voltage generator which applies a signal $V_0 e^{j\omega t}$. You will find it most convenient to work in cylindrical coordinates (see summary notes below).

a) Find the electric field as a function of radial distance ρ (i.e., $\mathbf{E}(\rho)$, which will be the same as the static field in this TEM line). Use Gauss's law and show your work.

b) Verify that for this **E** field

$$\frac{\partial \mathbf{E}_{\mathbf{y}}}{\partial \mathbf{x}} - \frac{\partial \mathbf{E}_{\mathbf{x}}}{\partial \mathbf{y}} = 0$$

c) For a TEM wave on this line, what is the H field? Remember for a TEM wave once you have E its easy to get H! Verify that

$$\frac{\partial H_{y}}{\partial x} - \frac{\partial H_{x}}{\partial y} = 0$$

d) Find the capacitance per unit length C for this line.

e) What is the inductance per unit length L?

f) Find Z_o for this transmission line.

Note that on this line you have a TEM to z wave, that it would be considered a plane wave, but it is not a uniform plane wave.

Notes on cylindrical coords:

point (x,y,z) is located by $\vec{R} = x \cdot \hat{x} + y \cdot \hat{y} + z \cdot \hat{z}$ or by $\vec{R} = \rho \cdot \hat{\rho} + z \cdot \hat{z}$ where $\rho = (x^2 + y^2)^{1/2}$, and $\hat{r} = \cos\theta \hat{x} + \sin\theta \hat{y}$ Also recall: $\cos\theta = \frac{x}{\sqrt{x^2 + y^2}} = \frac{x}{\rho}$ and $\sin\theta = \frac{y}{\sqrt{x^2 + y^2}} = \frac{y}{\rho}$ In addition to the \hat{r} and \hat{z} directions, there is an orthoganol direction \hat{q} , given by $\hat{q} = -\sin\theta \hat{x} + \cos\theta \hat{y}$

The following relations hold between the unit vectors:

 $\hat{\rho} \times \hat{\theta} = \hat{z}$ $\hat{\theta} \times \hat{z} = \hat{\rho}$ $\hat{z} \times \hat{\rho} = \hat{\theta}$

3. (10 pts) Consider the basic T-line with series loss (i.e., Z = R + j ω L, Y = j ω C). For "low" frequencies (i.e., $\omega << R/L$), find the complex propagation constant $\gamma = \alpha + j\beta$. Sketch ω vs. β and ω vs. α diagrams (make sure to indicate over what range of ω 's your sketches are valid). Plot ω on the vertical axis, and β on the horizontal axis. Also find the phase velocity v_p and the group velocity v_g for this line, and sketch their behavior versus ω . Finally, find the "effective index of refraction" (also know as the "slow wave factor") which is defined as $n_{eff} = \beta/\beta_0$, where $\beta_0 = \omega\sqrt{LC} = \omega\sqrt{\mu_0 \epsilon_0}$; sketch its behavior versus ω .

4. (5 points) Ramo, problem 5.15c (5.12c 2nd ed.)

- Find the complex propagation constant γ = α + j β for this line.
- Sketch ω vs. β and ω vs. lpha diagrams (make sure to show behavior for large eta).
- Find the phase and group velocities v_p and $v_g,$ sketch their behavior versus ω (make sure to show behavior for large ω).

