EE 363M Spring 2000
Homework Set 6
Wed. April 5
Due: Wed. April 12

1. (10 points) Using the formulas from Wheeler calculate the following for a microstrip on a microwave pc board with the characteristics:
$\varepsilon_{\mathrm{r}}=2.2$ loss tangent: $\tan \theta=9 \times 10^{-4} \quad \mathrm{~h}=25 \mathrm{mils} \quad \mathrm{w}=74 \mathrm{mils} \quad \mathrm{t}=1.4$ mils $(1 \mathrm{oz}$. copper $)$
a) Z_{O} for the line.
b) The effective dielectric constant, phase velocity (in fractions of c, the speed of light), and the guide wavelength at 10 GHz .
c) Check the results of (a) and (b) against the simple empirical results for a wide (i.e. $\mathrm{h}<0.8 \mathrm{w}$) line:

$$
\varepsilon_{\text {reff }}=0.475 \cdot \varepsilon_{\mathrm{r}}+0.67
$$

$$
\mathrm{Z}_{\mathrm{o}}=\frac{87}{\sqrt{\varepsilon_{\mathrm{r}}+1.41}} \ln \left[\frac{5.98 \mathrm{~h}}{0.8 \mathrm{w}+\mathrm{t}}\right]
$$

d) Check results against those in Pozar, pp. 185-186:
$\varepsilon_{\text {reff }}=\frac{\varepsilon_{\mathrm{r}}+1}{2}+\frac{\varepsilon_{\mathrm{r}}-1}{2} \cdot \frac{1}{\sqrt{1+12 \mathrm{~h} / \mathrm{w}}}, \mathrm{Z}_{\mathrm{O}}=\left\{\begin{array}{l}\frac{60}{\sqrt{\varepsilon_{\text {reff }}} \ln \left(\frac{8 \mathrm{~h}}{\mathrm{w}}+\frac{\mathrm{w}}{4 \mathrm{~h}}\right) \quad \text { for } \mathrm{w} / \mathrm{h} \leq 1} \\ \frac{120 \pi}{\sqrt{\varepsilon_{\text {reff }}}[\mathrm{w} / \mathrm{h}+1.393+0.667 \ln (\mathrm{w} / \mathrm{h}+1.444)]} \text { for } \mathrm{w} / \mathrm{h}>1\end{array}\right.$
e) Find the dielectric loss factor α_{d} and conductor (assume the metal is copper) loss factor α_{c} (the units below are $\mathrm{dB} /$ distance, found by multiplying the field loss factors by 8.68) at 10 GHz .
$\alpha_{\mathrm{d}} \approx 8.68 \cdot \frac{\beta_{\mathrm{o}} \varepsilon_{\mathrm{r}}\left(\varepsilon_{\text {reff }}-1\right)}{2 \sqrt{\varepsilon_{\text {reff }}}\left(\varepsilon_{\mathrm{r}}-1\right)} \cdot \tan \theta \mathrm{dB} /$ distance,$\alpha_{\mathrm{c}}=8.68 \cdot \frac{\mathrm{R}}{2 \mathrm{Z}_{\mathrm{O}}} \mathrm{dB} /$ distance, where
$R \approx \frac{1}{\sigma \cdot \delta \cdot(\text { perimeter })}=\sqrt{\frac{\omega \cdot \mu_{\mathrm{o}}}{2 \cdot \sigma}} \cdot \frac{1}{(2 \mathrm{w}+2 \mathrm{t})}$
2. (10 points) You are now given a different microwave pc board and asked to design a 50? line; again use the formulas from Wheeler. The new board characteristics are:

$$
\varepsilon_{\mathrm{r}}=10.2 \quad \text { loss tangent: } \tan \theta=2 \times 10^{-3} \quad \mathrm{~h}=25 \text { mils } \quad \mathrm{t}=1.4 \text { mils }
$$

a) Find the linewidth w.
b) What is the effective dielectric constant, phase velocity (in fractions of c), and the guide wavelength at 10 GHz ?
c) Using the equations above, what is the dielectric loss factor α_{d} and conductor (for copper) loss factor α_{c} (in $\mathrm{dB} / \mathrm{cm}$) at 10 GHz ?
d) Check the results of (a) and (b) against the empirical formulas given in Pozar pp. 185-186:

$$
\begin{aligned}
& \frac{w}{h}=\left\{\begin{array}{lc}
\frac{8 e^{A}}{e^{2 A}-2} & \text { for } w / h<2 \\
\frac{2}{\pi}\left[B-1-\ln (2 B-1)+\frac{\varepsilon_{r}-1}{2 \varepsilon_{r}}\left\{\ln (B-1)+0.39-\frac{0.61}{\varepsilon_{r}}\right\}\right]
\end{array} \quad \text { for } w / h>2\right.
\end{aligned}
$$

