Behavior of reflection coefficient

- recall the reflection coefficient at a load is just

$$
\rho=\frac{Z-Z_{o}}{Z+Z_{o}}=\frac{\frac{R+j \cdot X}{Z_{o}}-1}{\frac{R+j \cdot X}{Z_{o}}+1}=\frac{(r+j \cdot x)-1}{(r+j \cdot x)+1}
$$

- how does rho behave as "load" varies?
$-Z_{\text {load }}=0$ (short) \Rightarrow rho $=-1$
$-Z_{\text {load }}=\infty$ (open) \Rightarrow rho $=+1$
$-Z_{\text {load }}=$ purely imaginary number $\Rightarrow|\rho|=1$
$\rho=\frac{(j \cdot x)-1}{(j \cdot x)+1}=\frac{-(x)^{2}+1-2 \cdot(j \cdot x)}{x^{2}+1}$
$|\rho|=\sqrt{\frac{-(x)^{2}+1-2 \cdot(j \cdot x)}{x^{2}+1} \cdot \frac{-(x)^{2}+1+2 \cdot(j \cdot x)}{x^{2}+1}}=\frac{\sqrt{x^{4}-x^{2}-2 j x^{3}-x^{2}+1+2 j x+2 j x^{3}-2 j x+4 x^{2}}}{x^{2}+1}$
$=\frac{\sqrt{x^{4}+1+2 x^{2}}}{x^{2}+1}=\frac{\sqrt{\left(x^{2}+1\right)^{2}}}{x^{2}+1}=1$

Relationships between rho and Z

- note relation between rho and the "normalized impedance"

$$
\begin{gathered}
\frac{1+\rho}{1-\rho}=\frac{1+\frac{[(r+j \cdot x)-1]}{[(r+j \cdot x)+1]} \cdot \frac{[(r+j \cdot x)+1]}{[((r+j \cdot x)-1]} \cdot \frac{[(r+j \cdot x)+1]+[(r+j \cdot x)-1]}{[(r+j \cdot x)+1]}=\frac{2 r+j \cdot 2 x}{[(r+j \cdot x)+1]-[(r+j \cdot x)-1]}}{2} \\
\square \frac{1+\rho}{1-\rho}=r+j \cdot x
\end{gathered}
$$

- consider rho in complex plane $\rho=u+j \cdot v$

$$
r+j \cdot x=\frac{1+\rho}{1-\rho}=\frac{1+(u+j \cdot v)}{1-(u+j \cdot v)}=\frac{(1+u)+j \cdot v}{(1-u)-j \cdot v} \cdot \frac{(1-u)+j \cdot v}{(1-u)+j \cdot v}=\frac{1-u^{2}-v^{2}+2 \cdot j \cdot v}{(1-u)^{2}+v^{2}}
$$

- so the relationship between the normalized impedance and the real and imaginary parts of rho is

$$
r+j \cdot x=\frac{1-\left(u^{2}+v^{2}\right)}{(1-u)^{2}+v^{2}}+j \cdot \frac{2 \cdot v}{(1-u)^{2}+v^{2}}
$$

Relationships between rho and Z

$$
r+j \cdot x=\frac{1-\left(u^{2}+v^{2}\right)}{(1-u)^{2}+v^{2}}+j \cdot \frac{2 \cdot v}{(1-u)^{2}+v^{2}} \quad \rho=u+j \cdot v
$$

- from the real part:

$$
\begin{aligned}
& r \cdot\left[(1-u)^{2}+v^{2}\right]=1-\left(u^{2}+v^{2}\right) \\
& r \cdot\left[1-2 u+u^{2}+v^{2}\right]=1-\left(u^{2}+v^{2}\right) \\
& u^{2} \cdot(r+1)-2 u r+v^{2} \cdot(r+1)=1-r \\
& u^{2}-2 u \frac{r}{r+1}+v^{2}=\frac{1-r}{r+1} \\
& {\left[u^{2}-2 u \frac{r}{r+1}+\left(\frac{r}{r+1}\right)^{2}\right]+v^{2}=\frac{1-r}{r+1}+\left(\frac{r}{r+1}\right)^{2}} \\
& {\left[u-\frac{r}{r+1}\right]^{2}+v^{2}=\frac{(1-r) \cdot(1+r)+r^{2}}{(r+1)^{2}}}
\end{aligned}
$$

$$
\left[u-\frac{r}{r+1}\right]^{2}+v^{2}=\frac{1-r^{2}+r^{2}}{(r+1)^{2}}
$$

$$
\square
$$

$$
\left(u-\frac{r}{1+r}\right)^{2}+v^{2}=\frac{1}{(1+r)^{2}}
$$

Plot of reflection coefficient in complex

$$
\left(u-\frac{r}{1+r}\right)^{2}+v^{2}=\frac{1}{(1+r)^{2}}
$$

- plot rho as a function of r

Plot of reflection coefficient

$r+j \cdot x=\frac{1-\left(u^{2}+v^{2}\right)}{(1-u)^{2}+v^{2}}+j \cdot \frac{2 \cdot v}{(1-u)^{2}+v^{2}}$

- from the Im part: $(u-1)^{2}+\left(v-\frac{1}{x}\right)^{2}=\frac{1}{x^{2}}$
- these are also circles!
- center $\left(1, \frac{1}{x}\right) \quad$ - radius $\frac{1}{x}$
- plot rho as a function of x

$$
-\mathbf{x}= \pm \infty
$$

$(u-1)^{2}+\left(v-\frac{1}{ \pm \infty}\right)^{2}=\frac{1}{\infty}$
$-x>0$
$-x<0$
$-x=0$
$(u-1)^{2}+\left(v-\frac{1}{0}\right)^{2}=\frac{1}{0^{2}}$

Plot of reflection coefficient in complex

 plane

Notes on rho

- for any non-negative value of $\operatorname{Re}(Z)$ (i.e., $r \geq 0$) and any value of $\operatorname{Im}(Z)$ rho falls on or within the unit circle in the complex rho plane
- recalling that the reflection coefficient for a lossless transmission line of length l terminated by impedance Z_{L} is

$$
\rho(-l)=\frac{\mathrm{Z}_{\mathrm{L}}-\mathrm{Z}_{\mathrm{o}}}{\mathrm{Z}_{\mathrm{o}}+\mathrm{Z}_{\mathrm{L}}} \cdot \mathrm{e}^{-\mathrm{j} 2 \beta l}
$$

- so in the complex rho plane you trace out a circle of constant radius as l varies
- radius of circle is just $\left|\frac{\mathrm{Z}_{\mathrm{L}}-\mathrm{Z}_{\mathrm{o}}}{\mathrm{Z}_{\mathrm{o}}+\mathrm{Z}_{\mathrm{L}}}\right|$
- recall the input impedance was

$$
\mathrm{Z}_{\mathrm{in}}=\mathrm{Z}_{\mathrm{o}} \cdot \frac{\mathrm{Z}_{\mathrm{L}}-\mathrm{j} \cdot \mathrm{Z}_{\mathrm{o}} \cdot \boldsymbol{\operatorname { t a n } (\beta \cdot 1)}}{\mathrm{Z}_{\mathrm{o}}+\mathrm{j} \cdot \mathrm{Z}_{\mathrm{L}} \cdot \boldsymbol{\operatorname { t a n }}(\beta \cdot 1)}
$$

- you can read the values right off the Smith chart!

Plot of reflection coefficient in complex plane

$$
\rho=\frac{(r+j \cdot x)-1}{(r+j \cdot x)+1}
$$

curves of constant $r=\operatorname{Re}(Z)$

