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Diffusion Mechanisms
• probability of movement

–

substitutional 
impurity vacancy

interstitial 
impurity

interstitialcy
mechanism

, νo ~ 1013 - 1014 sec-1

– Emove ~ 0.6 - 1.2 eV
• T = 300K: ν ~ 1 jump 

per minute
• T = 1300K: ν ~ 109

jumps per sec

– Emove ~ 3 - 4 eV
• T = 300K: ν ~ 1 jump 

per 1030 - 1040 years!
• T = 1300K: ν ~ few 

jumps per sec

ν ≅ 4νo e
− E kT

• interstitial diffusers

• substitutional diffusers
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Fick’s First Law and “field assisted” 
diffusion

• impurity sees a periodic (crystal) potential
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• with applied field

• goal: find the flux 
passing through plane 
at position x
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Probability of jumping and flux

• barrier for jumps to the left is higher than to the right
– jump-to-the-left barrier:  W + (E • a/2)
– jump-to-the-right barrier:  W - (E • a/2)

• flux is      j  =  (# of ions / area) •
(prob. of surmounting barrier) •
(frequency of jump attempts)

= (concentration • “thickness”) • 
exp[- barrier / kT]   •   νo

= ( Nimp • a ) • exp[- barrier / kT] • νo

• j1 =   νo • a • N(x-a) • exp[ - q(W - E•a/2) / kT]
• j2 =   νo • a • N(x) • exp[ - q(W + E•a/2) / kT]
• j3 =   νo • a • N(x) • exp[ - q(W - E•a/2) / kT]
• j4 =   νo • a • N(x+a) • exp[ - q(W + E•a/2) / kT]

j2 j3

j4j1

x



Dean P. Neikirk  © 1999, last update September 30, 2002 4 Dept. of ECE, Univ. of Texas at AustinDean P. Neikirk  © 2001, last update September 30, 2002 4 Dept. of ECE, Univ. of Texas at Austin

Flux through plane at location x

• “average” “net flux” used for j(x)
– flux crossing plane at (x - a/2)

=  (j1 - j2) 
– flux crossing plane at (x + a/2)

=  (j3 - j4) 
– j(x) ≈  [ (j1 - j2) +  (j3 - j4) ] / 2

• what about N(x±a)?
– use one term Taylor series approximation:  N(x±a) ≈  N(x) ± a• ∂N/∂x

• combining terms gives

( )

















+⋅

∂
∂

−

















−⋅⋅⋅

ν
=

−

−−

Ea
Tk
qEa

Tk
q

x

Ea
Tk
qEa

Tk
qW

Tk
q

o

ee
x
Na

eexNaexj

222

222
2

)(

j2 j3

j4j1

x
j1 =   νo • a • N(x-a)  • exp[ - q(W - E•a/2) / kT]
j2 =   νo • a • N(x)  • exp[ - q(W + E•a/2) / kT]
j3 =   νo • a • N(x)  • exp[ - q(W - E•a/2) / kT]

j4 =   νo • a • N(x+a)  • exp[ - q(W + E•a/2) / kT]
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Flux result

• rearranging terms gives ( ) ( )
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– for “small” fields 
(i.e., E << kT/qa ≈ MV/cm @ 1000˚C)

• cosh (q a E / 2kT) ≈ 1
• sinh (q a E / 2kT) ≈ q a E / 2kT

• then

– where
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Drift-Diffusion Equation

• we have found the basic transport equation

  

j x( ) = µ ⋅N x( )⋅E
"drift"
     − D ⋅

∂N
∂x

"diffusion"
     

D
µ

=
νo ⋅ a2 ⋅ e

− q
kT
W

νo ⋅ a2

kT q
⋅ e

−
q
kT
W

=
kT
q

• note that 

– where
• µ is the mobility
• D is the diffusivity

– this is called Einstein’s relationship
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Magnitudes of diffusivity

• substitutional diffusers 
in Si
– column III: Al, B, Ga, In
– column V: Sb, As, P
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adapted from 
Ghandhi, 1st 
edition, p. 129
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• before we can use the diffusion equation we need to know if 
D depends on N
– what about internally generated fields?

Is the diffusivity independent of 
impurity concentration?

F int =
1
q

∂ E i
∂ x

n = n i e
E f − E i( ) k T

Efermi

ECBE

EVBE

x

Ei

– if the fermi level is not shown, can’t tell the difference between 
concentration gradient and electric field (F)

• internal electric field (1)

• carrier concentration  (2)

– basic relationships:
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• consider ∂n/∂x from eq. 2

Impact of internal field on diffusion
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– or

– so

• now substitute into drift-diffusion equation

• where
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• how big can Deff be?

Impact of internal field on diffusion
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– recall “law of mass action”

– space charge neutrality

– yields

– so
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Concentration dependent diffusivity

D
N
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• intrinsic case
– N << ni ,  n ≈ ni

• for intrinsic case Deff
is just D, independent 
of impurity 
concentration!

• there is NO conc. 
dependence here!
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Concentration dependent diffusivity

D
N
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• extrinsic case
– N >> ni ,  n ≈ ND

• for extrinsic case Deff
is 2*D

• there is some conc. 
dependence as you 
change from N << ni to 
N >> ni
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Concentration dependent diffusivity

• expect only for “high” impurity 
concentration

– high compared to intrinsic carrier 
concentration at the diffusion 
temperature!
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– intrinsic diffusion: Nimp << ni (n, p ≈ ni)
• D independent of Nimp

– extrinsic diffusion: Nimp >> ni (n or p ≈ 
Nimp)

• D may depend on Nimp
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Interactions with charged defects

• problem: observed Deff for N > ni is more than 2Dintrinsic

• consider interactions between charged impurities and 
charged defects
– assume defects of interest are vacancies
– assume each interaction contributes linearly to the total 

diffusivity
– assume size of contribution is proportional to relative 

concentration of the particular defect charge state
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• superscript indicates charge state
• subscript “i” indicates intrinsic value
• [ ] indicates concentration
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Does [Vr±] / [Vr±]i depend on anything?

– interactions are electrostatic
– BUT neutral state cannot interact via electric field

[ ] [ ] [ ]
[ ] 10

0
00 =⇒=

i
i V

VVV

• neutral term never changes!!
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First charged term

• charged defect formed from neutral defect in equilibrium reaction
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• recall that for a chemical reaction of the form

• the concentrations are related to the equilibrium constant k by 
Rault’s Law

• here a = b = c = 1, [A] = [V0], [B] = [h]  = p, [C] = [V1+], so

these are exactly the same  k!!!
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General charged term

• charged defect formed from neutral defect in equilibrium reaction
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Final result for D(N)

• combining terms gives D = Di
0 + Di
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– for the intrinsic case n, p = ni, so D = constant, independent of Nimp

– for acceptors p ≈ NA, n << ni

• if we assume simple extrinsic conditions
– for donors n ≈ ND, p << ni

• so we need to know what defect charge states exist, and their 
associated D’s
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Vacancy states in Si

• silicon exhibits four vacancy 
states

– V+1, V0, V-1, V2-

Dextrinsic ≈ Di
0 + Di
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– V0 and V+1 interactions dominate for 

p-type dopants

– V0, V-1, V2- dominate for n-type dopants
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Boron

• interactions with neutral 
and single + defects
– D ≈ D0 + D1+ • (p/ni)

adapted from 
Ghandhi, 1st 
edition, p. 130
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Phosphorus

• phosphorus
– interaction with 

neutral,  single - and 
double - charged 
defects

– D ≈ D0 + 
D1- • (n/ni) + 
D2- • (n/ni)2

adapted from Ghandhi, 
1st edition, p. 131
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Arsenic

• arsenic
– interaction with 

neutral and  single-
charged defects

– D ≈ D0 + 
D1- • (n/ni)

adapted from Ghandhi, 
1st edition, p. 131
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Fick’s Second Law: the diffusion 
equation

• consider difference between flux entering a 
small volume and flux leaving that volume

– must be related to change in concentration within 
that volume

– continuity and conservation of mass gives
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• recall Fick’s first law (dd with zero field)

• so have Fick’s second law

– if D is independent of N (and hence of x)
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Solutions of the diffusion equation, “constant” D

• have differential equation in time and space:

( ) ( ) ( )u x, t X x T t= ⋅
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• only possible if each side of the equation is equal to a constant (-k2) 
• k has units of 1/length

2
2

2

1 d X k
X dx

⋅ = − [ ] [ ]( )X A cos k x B sin k x= ⋅ ⋅ + ⋅ ⋅

2kD
dt
dT

T
1

⋅−=⋅ ( )2T exp D k t= − ⋅ ⋅
note Dt has units 

of {length}2

• try separation of variables:
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Boundary and initial conditions
• general solution should look something like

( ) o o

o

C , x x
C x , t 0

0 , x x
 <= =  >

( ) [ ]( ) [ ] [ ]( )2
n n n n n

n
C x, t A exp D k t E cos k x F sin k x= + − ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅∑

( ) [ ] [ ]( )n n n n
n

C x, t 0 A E cos k x F sin k x= = + ⋅ ⋅ + ⋅ ⋅∑

• still need to find the constants
– need to specify boundary and initial conditions to complete solution

• example: finite thickness undoped sheet surrounded by a 
“constant source” reservoir

xxo-xo

C

sl
ab

Co

( ) ( )o o oC x , t C x , t C= − =
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Finite thickness slab

• case: finite thickness, initially undoped slab, surrounded by 
“constant source” reservoirs of dopants
– bc: external concentration NEVER changes

• this looks just like a Fourier series problem for a rectangular 
pulse, unit height
– need to do “periodic extension”, then find Fourier coefficients

• yields simple rectangular pulse function, either sine or cosine series 
will be sufficient

• pick cosine series
– C(x = xo, t = 0) = Co kn = odd integer ·π / 2xo
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2x 2n 1 2x

∞

=

       − ⋅ π − − ⋅π    = ⋅ + ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅       − ⋅ π       
∑

xo-xo x

C
Co

sl
ab
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xo-xo

Co

Finite thickness slab
• case: finite thickness, initially undoped slab, surrounded by 

“constant source” reservoirs of dopants

( ) ( ) ( )
( )

( )2 n

slab o
n 1 o o

2n 1 1 2n 1
C x, t C 1 4 exp D t cos x

2x 2n 1 2x

∞

=

       − ⋅ π − − ⋅π    = ⋅ + ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅       − ⋅π       
∑

sl
ab

xo-xo

1

10-2

10-4

• units of time: xo
2/D
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How do you deal with an un-bounded 
medium?

• need to use Fourier transform rather than Fourier series
– gives continuous “spectrum” of k values
– integrate over k to get closed form expression

• in general, if the initial condition u(x, t = 0) is known for all 
x, then the final solution is given by

( ) ( ) [ ]2x 4Dt1u x , t u , 0 e d
2 D t

ξξ ξ
π

+ ∞
− −

− ∞

= ⋅ ⋅
⋅ ⋅ ⋅ ∫

( ) ( ) ( )u x, t X x T t= ⋅

2

2

dT d XX D T
dt dx

 
⋅ = ⋅ ⋅  

 

2

2

u uD
t x

∂ ∂
= ⋅

∂ ∂

2
2

2

1 d X k
X dx

⋅ = − 2kD
dt
dT

T
1

⋅−=⋅ note Dt has units 
of {length}2
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• example:
– uniform medium extending from x = - ∞ to x = + ∞
– initial concentration 

• for x < 0 :  C(x<0, t = 0) = 2·Co
• for x > 0 :  C(x>0, t = 0) = 0

– at t = ∞ the solution should be a constant everywhere = Co

Infinite slab, initially “half-doped”

( ) [ ]2x 4Dto2 C , 01C x , t e d
0 , 02 D t

ξξ
ξ

ξπ

+ ∞
− −

− ∞

⋅ <
= ⋅ ⋅ >⋅ ⋅ ⋅ 

∫

( ) [ ] [ ]2 2
0

x 4Dt x 4Dt
o

0

1C x , t 2 C e d 0 e d
2 D t

ξ ξξ ξ
π

+ ∞
− − − −

− ∞

 
= ⋅ ⋅ ⋅ + ⋅ 

⋅ ⋅ ⋅   
∫ ∫

xz
2 D t
ξ −

=
⋅ ( ) ( )

2x 2 Dt
z 2 Dt 4Dt

o
1C x , t 2 C e 2 D t dz

2 D tπ

−
 − ⋅ 

− ∞

 
= ⋅ ⋅ ⋅ ⋅ 

⋅ ⋅ ⋅   
∫

( ) 2zo

x 2 D t

2 C D tC x , t e dz
D tπ

∞
−

⋅

 ⋅ ⋅ ⋅
 = ⋅

⋅ ⋅   
∫
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Infinite slab, “half-doped”
• example:

– uniform medium extending from x = - ∞ to x = + ∞
– initial concentration 

– for x < 0 :  C(x<0, t = 0) = 2·Co
– for x > 0 :  C(x>0, t = 0) = 0

( ) 2z
o o

x 2 D t

2 xC x , t C e dz C erfc
2 D tπ

∞
−

⋅

    
 = ⋅ = ⋅    ⋅      

∫

( ) ( )2 2
y

y 0

2 2erfc y e d 1 e d 1 erf yξ ξξ ξ
π π

∞
− −≡ = − = −∫ ∫

( ) 2zo

x 2 D t

2 C D tC x , t e dz
D tπ

∞
−

⋅

 ⋅ ⋅ ⋅
 = ⋅

⋅ ⋅   
∫
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Infinite slab, “half-doped”
• example: uniform medium extending from x = - ∞ to x = + ∞
• initial concentration C(x<0, t = 0) = 2·Co ;  C(x>0, t = 0) = 0

( ) 2z
o o

x 2 D t

2 xC x , t C e dz C erfc
2 D tπ

∞
−

⋅

    
 = ⋅ = ⋅    ⋅      

∫

Co

Dt = 0.01
Dt = 0.1

Dt = 1 Dt = 10

Dt = 1000

0 2-2

Dt = 0.01
Dt = 0.1

Dt = 1

Dt = 10

Dt = 1000

0 2 √Dt-2 √Dt
distance units of 2√Dt
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Boundary/initial conditions: constant 
source diffusion into a “half-space”

• initial conditions
– N(x, 0) = 0  (no dopants in sample)

• boundary conditions (sample extends from x = 0  to x = + ∞)
– N(0, t) = NS, a constant
– N(∞, t) = 0 (dopants never make it to the “back” of the wafer)

• we’ve already solved this one: see the last slide!
– solution is a complimentary error function

N x,t( ) = Ns erfc
x

2 D t
 

 
  

 
 

– note argument is x/2√Dt
• examples

– pre-deps
– high surface concentration diffusions

• ohmic contacts
• emitters

Dt = 0.01
Dt = 0.1

Dt = 1

Dt = 10
Dt = 1000

0 2 √Dt-2 √Dt

erfc y( ) = 1 −
2
π

exp −z2( )dz0
y

∫
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Co

Dt = 0.01
Dt = 0.1

Dt = 1

Dt = 10

Dt = 1000

0 21

“pre-dep” profiles
• simple erfc result

Dt = 0.01

Dt = 0.1

Dt = 1

Dt = 10

Dt = 1000

0 21 3 4
distance units of 2√Dt
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Solid solubility limits

• for various impurities in 
silicon
– note that solubility 

grows as T increases, 
peaks, then falls as T 
nears the melting 
point (1420°C)

• adapted from Ghandhi, 
2nd ed. p. 90

So
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• initial condition
– N(x, 0)  =  2Qoδ(x) (all dopants initially at x = 0)

• 2Qo is the TOTAL dose, #/cm2

• at all times t

Boundary/initial conditions: limited source 
diffusion into an unbounded medium

• note argument is x/2√Dt
– Npeak = Qo / √πDt

• examples
– drive-ins
– low surface concentration, deep diffusions

• CMOS n, p – wells; bipolar base

N x, t( ) =
Qo
π Dt

exp −
x

2 Dt
 

  
 

  

2 

 
 

 

 
 

( ) oN x ', t dx ' 2Q
∞

−∞
=∫

• so solution is a gaussian

( ) ( ) [ ]2x 4Dt
o

1N x , t 2Q e d
2 D t

ξδ ξ ξ
π

+ ∞
− −

− ∞

= ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ∫

• now apply our transform result

2x 4DtoQ e
D tπ

−= ⋅
⋅ ⋅
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Constant diffusivity results

• solutions to the diffusion equation
– “constant source”

• unlimited supply of 
impurities

• erfc shape

constant source

limited source

tDl ⋅≈ TkE
oeDD −≈

t1

t2
t3

t4

distance x

co
nc

e n
t r

at
io

n

t1 t2 t3 t4

4 3 2 1t > t > t > t

t4 > t3 > t2 > t1

co
nc

en
t r

at
io

n

distance x

– “limited source”
• fixed number of impurities 

initially located at surface of 
sample

• gaussian shape

– diffusion length: 

• D ~ 3 x 10-14 cm2 sec-1 @ 
1300K

• l ~ 0.1 µm @ one hour
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gaussian and erfc profiles

argument “z” = x / 2√Dt
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Slab out-diffusion
• diffusion from finite thickness doped region (located from –xo

to xo), diffusing out into undoped material

( ) ( ) ( )o oo x x x xCC x, t erfc erfc
2 2 Dt 2 Dt

    − + = ⋅ +    
     

Dt = 10-3, 10-1, 1, 102, 104
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How do you handle multiple 
steps?

• for several sequential “diffusions”
– if the same BC’s and temperature, then its easy 

• just add the times to get D• (t1 + t2)
– what if the temperatures change?

• example: gaussian profile “started” as a delta function, but 
after time δt, it’s a gaussian

a gaussian profile must transform into a gaussian!
first time/temp. step generates a gaussian, serves as 
initial condition for second gaussian

add: D1•t1 + D2•t2

( )
( ) ( ) 


























+
−

+π
=

2

22112211 2
exp,

tDtD
x

tDtD
QtxN o

• hard to do anything easy for a constant source diffusion
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• first step (t <  t1) is constant source, surface concentration N01
– pre-dep

• second step (t1 <  t < t1 + t2) is limited source
– drive-in

• profile is a “Smith integral”
– surface concentration is

Two-step diffusion profile

tan−1 D1 t1
D2 t2

>> 1
 

 
  

 
 ≈

π
2

⇒ Nsurface ≈
2N01

π
π
2

= N01

22
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111 21tan
tD
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tD
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surface π
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<<−
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2
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QN o

surf π
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π
=

Nsurface =
2N01

π
tan−1 D1 t1

D2 t2

 

 
  

 
 

⇒ Qo
effective =

2N01
π

D1t1

– limits
• D1t1 >> D2t2 (long pre-dep)

• D1t1 << D2t2 (long drive-in)

– recall drive-in result
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Concentration dependent D profiles

• “high” concentration
– must solve









∂
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∂
∂

=
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∂
x
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adapted from 
Ghandhi, 2nd edition, 
p. 181
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erfc, D = Dsurf 

– normally requires 
numerical solution

– note that as N < ni
D goes to a constant!!
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Diffusion in two dimensions

• at mask edge have 2-D behavior
– diffuses laterally ~ 75 - 80 % of depth

adapted from Ghandhi, 2nd edition, p. 183 

0.0001

0

0.5

1

1.5

2

2.5

3

x / 2√Dt

y 
/ 2
√D

t

diffusion mask
N/Nsurf = 0.9

0.3
0.1

0.01

0.001

0.5

limited source

diffusion mask

N/Nsurf = 0.5

0.3
0.1

0.01

0.001

0.0001

0

0.5

1

1.5

2

2.5

3
constant source



Dean P. Neikirk  © 1999, last update September 30, 2002 43 Dept. of ECE, Univ. of Texas at AustinDean P. Neikirk  © 2001, last update September 30, 2002 43 Dept. of ECE, Univ. of Texas at Austin

Finding junction depth
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argument “z” = x / 2√Dt

N
 / 

N
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e
Nbackgrnd /Nsurface

zerfc ≈ 2.9 zgauss ≈ 3.2

example:
NB/Nsurf = 3x10-5

zerfc ≈ 2.9 xj
erfc ≈ 2.9(2√Dt)

example:
NB/Nsurf = 3x10-5

zgauss ≈ 3.2 xj
gauss ≈ 3.2(2√Dt)
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Diffusion Systems

• typical diffusion furnace controlled to ± 1 /2˚ C in 600  -
1200˚ C range

• usually transport the oxide of impurity to silicon, react there 
to form free impurity and SiO2

• surface concentration usually set by solid solubility limit 
(may not all be electrically active)

• transport mechanisms:
– spin - on glass
– solid source
– liquid source or gas source or gas source stream
– best control over doping concentrations (dose) usually only ~ 

5 -10 %
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Boron in silicon

• maximum surface concentration set by solid solubility
– @ 1100˚ C : Nss ≈ 4 x 1020 cm-3

– only about 2 x 1020 are active
• transport of oxide to silicon surface

– 2B2O3 + 3Si  -->  4B + 3SiO2
– how much oxide does this make?

• dose Qo ~ 1015 cm-2 (this is a lot!)  --> only about one “atomic 
layer” of SiO2

• sources
– solid: oxidized boron nitride
– liquid: trimethylborate (TMB)
– gas: diborane
– all react in furance gas stream to produce B2O3

• potential problem: “boron skin”
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Phosphorus in silicon

• maximum surface concentration set by solid solubility
– @ 1100˚ C : Nss ≈ 1021 cm-3

– only about 3 x 1020 are active
• transport of oxide to silicon surface

– 2P2O5 + 5Si  -->  4P + 5SiO2

• sources
– solid: silicon pyrophosphate in inert binder
– liquid: phosphorus oxychloride POCl3
– gas: phosphine PH3
– all react in furnace gas stream to produce P2O5

• potential problems
– anomalous diffusion profiles
– emitter-push effect
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Anomalous phosphorus diffusion

• “kink” in profile 
associated with 
interaction between P+

and charged defects

D ≈ Di
0 + Di

1− ⋅
n
ni
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2− ⋅

n
ni
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[V2-] very 
high

[V1-] dominates

(P+ & V2-)  --> 
(P+ & V1-)  +  e-

free electron 
concentration

D ≈ constant
ni

recall that for phosphorus
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with emitter push

without emitter push

boron

Emitter push effect

• also associated with phosphorus diffusion
– high concentration diffusion of phosphorus alters vacancy 

concentrations
• vacancies have very high diffusivity!

– “excess” vacancies can interact with other impurities that may 
already be present

• enhances boron diffusion, causes base to “dip”

δ

phosphorus
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Ion Implantation

• alternative to diffusion for the introduction of dopants
• essentially a “physical” process, rather than “chemical”
• advantages:

– mass separation allows wide varies of dopants 
– dose control:

• diffusion 5 - 10%
• implantation:

– 1011 - 10 17 ions / cm2 ± 1 %
– 1014 - 1021 ions / cm3

– low temperature 
– tailored doping profiles
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Diffusion with spherical symmetry

• Fick’s 1st law:
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• apply continuity equation

• yields Fick’s 2nd law

– divergence in spherical coordinates

• with spherical symmetry problem is 1-D
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Spherical diffusion equation

• looks exactly like 1-d problem, except solution is for the 
function u = r · C(r,t)

• general solution to the diffusion equation for infinite 
medium:
– requires only initial condition
– must be careful about “infinite medium condition”

• use “reflection” to handle half-space diffusion
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