Diffusion Mechanisms

« probability of movement

—E/KT
’

- vEdye v, ~ 1013 -10"4 sec-'

substitutional

* interstitial diffusers ) )
impurity vacancy

- E ~0.6-1.2eV

move
« T=300K: v~1jump
per minute

« T=1300K: v ~10°
jumps per sec

 substitutional diffusers
— E ~3-4¢eV

move
« T=300K: v~1jump
per 1030 - 1040 years!

e T=1300K: v ~ few interstitialcy

interstitial -
i mechanism
jumps per sec impurity




Fick’s First Law and “field assisted”
diffusion

impurity sees a periodic (crystal) potential

4

potential

with applied field

goal: find the flux
passing through plane
at position x




Probability of jumping and flux

barrier for jumps to the left is higher than to the right
— jump-to-the-left barrier: W + (E * a/2)
— jump-to-the-right barrier: W - (E * a/2)
fluxis j = (#ofions/area)-
(prob. of surmounting barrier) ¢
(frequency of jump attempts)

(concentration ¢ “thickness”) ¢
exp[- barrier / kT] * v,

( Nimp ® @) * exp[- barrier / kT] ¢ v,

ji1= v,*ac*N(x-a) *exp[-q(W - E+a/2) | kT]
jo= v,*ac*N(x) *exp[-q(W + Eeal2) | kT]
j3= v,*ac*N(x) *exp[-q(W - E«al2) | kT]
j4= v, °*ac*N(x+a)  exp[ - q(W + E+a/2) | kT]




Flux through plane at location x

- “average” “net flux” used for j(x) |
— flux crossing plane at (x - a/2) T

= (ir - Jo) 2 ' s
— flux crossing plane at (x + a/2) ] X
= G -i T b e 3 i
. .. o-a- x) *exp[-q °a
= JX)= [(y1-J2 * (3-Ja) 112 i . *a*N(x) *exp[-q(W - E+a/2) / kT]
j v, *a-°* N(x+a) * exp[ - q(W + E«a/2) | kT]

« what about N(x*a)?
— use one term Taylor series approximation: N(x*a)= N(x) * a* dN/ox

« combining terms gives

v,
Jj(x) = 7

, ON

_a—

ox |,




Flux result

4y

 rearranging terms gives j(x) = 2v, -a-e ¥’ -N(x)-sinh(%an

q
—v -a’ e i N cosh(Lan
ox 2kT
— for “small” fields
(i.e., E<< kT/ga=MV/cm @ 1000°C)
« cosh(qgaE/2kT)=1
« sinh(qaE/2kT)=qaE/2kT

 then ), 4,
j(x) Vo @ ,wr |




Drift-Diffusion Equation

 we have found the basic transport equation

() = g NE - D2

"drift” ndiffusion”

— where
* uis the mobility
* D is the diffusivity

 note that

2
Vo - a

KT/q

— this is called Einstein’s relationship




Magnitudes of diffusivity

Temperature (°C)
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Is the diffusivity independent of
impurity concentration?

 before we can use the diffusion equation we need to know if
D depends on N

— what about internally generated fields?

— if the fermi level is not shown, can’t tell the difference between
concentration gradient and electric field (F)

— basic relationships:

* internal electric field

_ L
q

. : E¢ - Ei)kT
* carrier concentration pn = n. e( i 1)/ (2)




Impact of internal field on diffusion

on 8 e( f—E,.)/kT] _ n'e(Ef—E,-)/kT .

 consider dn/ox fromeq.2 ; 2 (&, -, )]

0
6)6 —_— ax

on n OE,

ox kT ax_

* now substitute into drift-diffusion equation

j&)=D-LNnE, - DL _ _p| Ly [HLon) N
kT ox kT g nox ox

D. E@+8_N} - _D.[ﬁa_"ﬂ} ON

n ox Ox n oN Ox

g, N

s
Ox « where




Impact of internal field on diffusion

how big can D be?

recall “law of mass action”

space charge neutrality

yields




Concentration dependent diffusivity

on |
oN 7{1 +%/1+4(ni/N)2}

* intrinsic case
— N<<n;, n=n,

-1

2} << 1 |:> 5—]’:]

« for intrinsic case D
is just D, independent
of impurity
concentration!

* there is NO conc.
dependence here!




Concentration dependent diffusivity

 extrinsic case

=) o -k s

for extrinsic case D
is 2*D
* there is some conc.
dependence as you

change from N << n, to
N >> n;




Concentration dependent diffusivity

Temperature (°C)
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« expect only for “high” impurity
concentration
— high compared to intrinsic carrier
concentration at the diffusion
temperature!

7

— intrinsic diffusion: N;,, << n; (n, p=n;)

* D independent of N,

— extrinsic diffusion: N; .., >>n; (norp=
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Interactions with charged defects

problem: observed D for N > n, is more than 2D, . ...
consider interactions between charged impurities and
charged defects

assume defects of interest are vacancies

assume each interaction contributes linearly to the total
diffusivity

assume size of contribution is proportional to relative
concentration of the particular defect charge state

D — DO VO D1+ V1+ D2+ V2+
| | | | | 2+|
- 2-

« superscript indicates charge state
* subscript “i” indicates intrinsic value
* []indicates concentration



Does [V™] | [V™], depend on anything?

— interactions are electrostatic
— BUT neutral state cannot interact via electric field

)= ) = =

i

neutral term never changes!!




First charged term {VV_][

charged defect formed from neutral defect in equilibrium reaction
Ve + bt < v

recall that for a chemical reaction of the form
aA+bB < cC

the concentrations are related to the equilibrium constant k by
Rault’s Law [C]c

l4]"-[8]

herea=b=c=1,[A] =[V9], [B] =[h] =p, [C] =[V], so

=k

intrinsic extrinsic

L
7l

k

P
——

p=n;

these are exactly the same k!!!




General charged term H
el

charged defect formed from neutral defect in equilibrium reaction

Ve + rht < V'

"extrinsic"

, [Vﬁ]ix o . :VAH: ) -
() -1, (p)"- |T[/°]|
=[r°|.

similarly




Final result for D(N)

« combining terms gives D=D + D - £ + D* .(_P

n;

b
1

- n — n
+Di1 — 4+ Di2 [—
0 0

— for the intrinsic case n, p = n;, so D = constant, independent of N; |

« if we assume simple extrinsic conditions
— for donors n = Np, p <<n,

_ N
D=D’+ D".—R

— for acceptors p=N,, n <<n,

N
D=D’+ Dt.—A
n;j

« so we need to know what defect charge states exist, and their
associated D’s




Vacancy states in Si

« silicon exhibits four vacancy
states

v+, Vo y-1 y2-

Temperature (°C)
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Boron Boron in silicon

 interactions with neutral
and single + defects

— D=DO0+ D1t e (plni)
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P hOS phOI'US N pholsphorlus in sliliconl

/

y 4
y 4
V4

 phosphorus

— interaction with
neutral, single - and
double - charged
defects

— D=D%+
D'-« (n/n;) +
D2 ¢ (n/n,)?

Diffusivity (cm?2 / sec)
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adapted from Ghandhi,
1st edition, p. 131




Arsenic arsenic in silicon

e arsenic

— interaction with
neutral and single-
charged defects
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Fick’s Second Law: the diffusion
equation

consider difference between flux entering a
small volume and flux leaving that volume I

— must be related to change in concentration within spatial rate of change
that volume of change of particle

of flux accumulation
— continuity and conservation of mass gives "é? 5?,
 ox o
: ON

recall Fick’s first law (dd with zero field) j = —Da

so have Fick’s second law aaN ) = aa
X

ON
— if D is independent of N (and hence of x) )




Solutions of the diffusion equation, “constant” D
* have differential equation in time and space:

« try separation of variables:

X — =
dt dx?

1 dT 1 {dzx}

dT | .dZX}

D-T dt X | dx?

function of time only function of dis tan ce only

« only possible if each side of the equation is equal to a constant (-k2)
* k has units of 1/length
1 &

e T K —> X = (A-cos[k-x] + B sin[k-x])

, note Dt has units
— T = exp(—D'k 't) of {length}2




Boundary and initial conditions

general solution should look something like
C(x,t) = A+ Y exp(-D-[k,]'t)(E,-cos[k,-x] + F,-sin[k,-x])

still need to find the constants
— need to specify boundary and initial conditions to complete solution

example: finite thickness undoped sheet surrounded by a
“constant source” reservoir

C 4
X | <X,

x|>x,




Finite thickness slab

0) = A+;(En-cos[kn-x] + Fn-sin[kn-x])

case: finite thickness, initially undoped slab, surrounded by
“constant source” reservoirs of dopants

— bc: external concentration NEVER changes
this looks just like a Fourier series problem for a rectangular
pulse, unit height

— need to do “periodic extension”, then find Fourier coefficients

 vyields simple rectangular pulse function, either sine or cosine series
will be sufficient

» pick cosine series
- C(x=x,,t=0)=C_ % Kk =oddinteger n/2x,

Cywr (X, t) = CO-{1+4-Iilexp[—D-{(2nle).nT.tJ{

= (0]



Finite thickness slab

- case: finite thickness, initially undoped slab, surrounded by
“constant source” reservoirs of dopants

Con (x5 t) = Co{l+4-nilexp(—D-{(2n2X?'nT.tJ.[ (251_13;.7{00{(2112"1)%.XD}

N T

« units of time: x,2/D




How do you deal with an un-bounded
medium?

. d*X
dx?
1 dT

. =_D-k? note Dt has units
T dt of {length}?

* need to use Fourier transform rather than Fourier series
— gives continuous “spectrum” of k values
— integrate over k to get closed form expression

* in general, if the initial condition u(x, t = 0) is known for all
X, then the final solution is given by

£ - x|’ /4Dt d&

u(x, t) = 2.\/;?-]:%5, 0)-e




Infinite slab, initially “half-doped”

 example:
— uniform medium extending from x=-o© to x =+
— initial concentration
« forx<0: C(x<0,t=0)=2-C,
« forx>0: C(x>0,t=0)=0
— att =« the solution should be a constant everywhere = C_

.+OO 2'C0’§<0_e—[§—x]2/4Dt d§
0 , >0




Infinite slab, “half-doped”

 example:
— uniform medium extending from x =-o to x =+ o
— initial concentration
— forx<0: C(x<0,t=0)=2-C,
—forx>0: C(x>0,t=0)=0




<
U
>
=

15 +

Infinite slab, “half-doped”

« example: uniform medium extending from x=-o tox =+ ©
* initial concentration C(x<0,t=0)=2-C_ ; C(x>0,t=0)=0

2 o )
C(x, t) = C,-|—= J- e” dz| = C,-|erfc| —=
\/;x/z\/ﬁ 24Dt
: WN _Dt=1000
2] Dt=10
Dt=1000 _
Dt=1
pt=o0.04\ D=1 Pr=10 oy
Dt = 0.01
R 0 2 -*
distance units of 2Dt




Boundaryl/initial conditions: constant
source diffusion into a “half-space”

 initial conditions
— N(x, 0) =0 (no dopants in sample)
* boundary conditions (sample extends from x =0 to x =+ x)
— N(O, t) = Ng, a constant
— N(, t) = 0 (dopants never make it to the “back” of the wafer)
 we’ve already solved this one: see the last slide!
— solution is a complimentary error function

N(x,t) = N erfc(2 \/%j erfc(y)=1- % onexp(—zz)]z

— note argument is x/2\Dt

« examples
— pre-deps
— high surface concentration diffusions

« ohmic contacts
* emitters




“pre-dep” profiles

* simple erfc result

C,: i
Dt =1000 1
N Dt =1000
1 Dt = 10
Dt=10 i Dt = 1
Dt =¥01 Dt =1 001 4
0 1 2 3' :
distance units of 2+Dt Dt % 0.01




Solid solubility limits

for various impurities in
silicon
— note that solubility

grows as T increases,
peaks, then falls as T
nears the melting
point (1420°C)

adapted from Ghandhi,

2nd ed. p. 90
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Boundary/initial conditions: limited source
diffusion into an unbounded medium

initial condition
— N(x, 0) = 2Q_3(x) (all dopants initially at x = 0)
« 2Q, is the TOTAL dose, #/cm?

J:N(X',t)dx' =2Q,

 atalltimest

now apply our transform result

N(X, t) =

so solution is a gaussian

note argument is x/2\Dt
— N .. = Q, / VnDt

examples
— drive-ins
— low surface concentration, deep diffusions
« CMOS n, p — wells; bipolar base




Constant diffusivity results

« solutions to the diffusion equation A constant source
“constant source”
* unlimited supply of
impurities
» erfc shape

t4>t3>t2> 14

concentration

— “limited source”

» fixed number of impurities
initially located at surface of
sample

* gaussian shape

distance x

— diffusion length: limited source

| ~ Dt D =~ De """

« D~3x10""cm?2sec' @
1300K

* 1~0.1 yum @ one hour

t4>t3>t2> 4

concentration

distance x




gaussian and erfc profiles

1x10°3

1x10™"

1x1072

1x1073

1x10™

1x107°

1x107

concentration normalized to N ,cc

1x1077 )

—— 1x10°8 ﬁ
2.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

argument “z” = x / 2Dt




Slab out-diffusion

« diffusion from finite thickness doped region (located from —x,_
to x.), diffusing out into undoped material

Clx 1) = 2@_{%{(25@} . erf{(xozﬁ)_tx)}}

Dt =103, 10, 1, 102, 104




How do you handle multiple
steps?

* for several sequential “diffusions”

— if the same BC’s and temperature, then its easy
* just add the times to get D- (t, + t,)

— what if the temperatures change?

« example: gaussian profile “started” as a delta function, but
after time dt, it’s a gaussian

= a gaussian profile must transform into a gaussian!

= first time/temp. step generates a gaussian, serves as
initial condition for second gaussian

= add: D,t, + D,°t,

0, a |
Mt) = D 7 o) exp[{Q\/(lel * thz)} ]

 hard to do anything easy for a constant source diffusion




Two-step diffusion profile

- first step (t < t,) is constant source, surface concentration N,
— pre-dep
« second step (t, < t<t, +t,)is limited source
— drive-in
« profile is a “Smith integral”
— surface concentration is Nsurface =
— limits
- D,t, >>D,t, (long pre-dep)

_ t T
tan 1( % >> 1) ~ 5 = Ngurface =
2

 D,t, <<D,t, (long drive-in)

t( [Di __ 1} . [Dn
D2t2 D2t2

— recall drive-in result

2N, / Dt i 2N
0, PN 01 141 _ ngfectlve _ 01 Dyt
D)) m Dot 7




Concentration dependent D profiles

“high” concentration
— must solve

ON _ O0[pOoN
ot 0x 0x

— normally requires
numerical solution

— note that as N < n,
D goes to a constant!!

normalized concentration, N / Nsurf
-—
o
LN

-2
10
adapted from 0 02 04 06 08 1.0 1.2 1.4

Ghandhi, 2nd edition, 1/2
p. 181 x| (4Dgyf t)




in two dimensions
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Finding junction depth

example: 1x10°
Ng/N, . = 3x10°S

Zrie = 2.9 EH) X°e = 2,9(24Dt)

1x10™"

1x1072

1x1073

1x10™
IN —

surface 1x107°

N

backgrnd

1x10°6

example: 1x10°7 N
Ng/N_ ¢ = 3x10-°
surf = X 1x10°8 :

=32 m) x92ss = 3.2(2\Dt) 0005101520253m354o
~29 4////// \\\\*

erfc gauss

ument “z” = x | 2\Dt

gauss
= 3.2




Diffusion Systems

typical diffusion furnace controlled to 1 /2° C in 600 -
1200° C range

usually transport the oxide of impurity to silicon, react there
to form free impurity and SiO,

surface concentration usually set by solid solubility limit
(may not all be electrically active)
transport mechanisms:

spin - on glass

solid source

liquid source or gas source or gas source stream

best control over doping concentrations (dose) usually only ~
5-10 %




Boron in silicon

maximum surface concentration set by solid solubility
— @1100° C:N_ =4 x 102 cm-3
— only about 2 x 1020 are active

transport of oxide to silicon surface
~ 2B,0, + 3Si --> 4B + 3SiO,

— how much oxide does this make?
« dose Q, ~ 10'° cm- (this is a lot!) --> only about one “atomic

layer” of SiO,
sources
— solid: oxidized boron nitride
— liquid: trimethylborate (TMB)
— gas: diborane
— all react in furance gas stream to produce B,0O,

potential problem: “boron skin”




Phosphorus in silicon

maximum surface concentration set by solid solubility
- @1100°C: N =10?" cm™3
— only about 3 x 1020 are active
transport of oxide to silicon surface
— 2P,0; +5Si --> 4P + 5Si0,
sources
— solid: silicon pyrophosphate in inert binder
— liquid: phosphorus oxychloride POCI,
— gas: phosphine PH,
— all react in furnace gas stream to produce P,O,
potential problems
— anomalous diffusion profiles
— emitter-push effect




Anomalous phosphorus diffusion

[V#] very
high recall that for phosphorus
D~D! || ~ DI |2 o 2
; D~DY + Dll_-—+Di2_-[—j

N

\

(P* & VZ) -->
j (P+ & V1') + e-
[V1] dominates

A

Iy

“kink” in profile

, associated with

free electron interaction between P*
concentration and charged defects

D =~ constant




Emitter push effect

» also associated with phosphorus diffusion

— high concentration diffusion of phosphorus alters vacancy
concentrations

« vacancies have very high diffusivity!

— “excess” vacancies can interact with other impurities that may
already be present

« enhances boron diffusion, causes base to “dip”

without emitter push phosphorus

with emitter push




lon Implantation

alternative to diffusion for the introduction of dopants
essentially a “physical” process, rather than “chemical”

advantages:
— mass separation allows wide varies of dopants

— dose control:
» diffusion 5 - 10%
* implantation:
— 101" -10"7jions/cm?2 1%
— 10" -10%' jons/cm?d
— low temperature

— tailored doping profiles




Diffusion with spherical symmetry

1=D-VC = f.D.a_C

 Fick’s 1st law: or

spherical symmetry

time rate
spatial rate 8;;;}?3}%:
- apply continuity equation i accumulation
‘ oC

_ ﬁ." — i
) ot

- vyields Fick’s 2" law a@—f =Ve(D-VC)

— divergence in spherical coordinates

« with spherical symmetry problem is 1-D

Vv
spherical symmetry




Spherical diffusion equation

looks exactly like 1-d problem, except solution is for the
function u =r - C(r,t)
general solution to the diffusion equation for infinite
medium:
— requires only initial condition
— must be careful about “infinite medium condition”
» use “reflection” to handle half-space diffusion

+ 00

1 )
. 0)- “[e -] /4Dtd
5 JuE0)e :




