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Epitaxy

• growth of thin crystalline layers upon a crystalline substrate
– heteroepitaxy

• dissimilar film and substrate
– autoepitaxy

• same film and substrate composition 
• techniques

– Vapor-Phase Epitaxy (VPE)
• CVD: Metal-organic VPE (MOCVD, OMVPE, ...)
• PVD: Molecular Beam Epitaxy (MBE)

– Liquid-Phase Epitaxy (LPE)
• mainly for compound semiconductors

– Solid-Phase Epitaxy
• recystallization of amorphized or polycrystalline layers

• applications
– bipolar, BiCMOS IC's

• 2-5 µm in high speed digital
• 10-20 µm in linear circuits

– special devices
• SOI, SOS
• HEMT, MODFET, HBT



Dean P. Neikirk  © 1999, last update November 14, 2002 2 Dept. of ECE, Univ. of Texas at Austin

Vapor Phase Epitaxy

• transport of reactants to the substrate from gas stream primarily 
laminar( uniform velocity) away from the substrate, parallel to 
substrate face

– friction at surfaces forces gas flow velocity to be zero at substrate 
face

• stagnant boundary layer at interface through which reactants must diffuse
• causes concentration, temperature gradients between gas & substrate
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VPE System Design

• general requirements:
– cleanliness essential

• particle 
• gas purity (H2 typically 99.9999%)

– precise control of gas flows necessary
– provision for in situ etch 
– substrate mounting and slice carrier designed to minimize turbulence

• chamfer wafer edges
• recess wafer slots

– boundary layer control via tilted carrier to increase gas velocity as x 
increases

– heating of susceptor via (cold wall)
• induction
• radiant lamps

• use of LPCVD:
– increases boundary layer thickness for given gas velocity
– produces good uniformity
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Silicon VPE chemistry

• hydrogen reduction of chlorosilanes:
– silicon tetrachloride, SiCl4
– dichlorosilane, SiH2Cl2
– trichlorosilane, SiHCl3

• reaction paths:  T ≥ 800˚C
– predominant species formed are HCl and SiCl2; at 

temperatures between 1150-1250˚C
adapted from 
Ghandhi, 2nd ed.,  
p. 298.
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• SiCl4 reacts again in gas phase to 
produce HCl, SiCl2

– overall reaction:  
SiCl4 + 2H2 Si + 4HCl

• all these are reversible reactions
– etching occurs if have SiCl4 rich gas 
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Silicon VPE growth
• homogeneous nucleation

– reactants combine to form isolated nuclei in gas phase, then attach to 
substrate surface

– can cause poor crystal quality growth
• heterogeneous nucleation

– reactants coalesce only on the surface where deposition occurs
– note growth is lateral, not really vertical:

• adsorbed species move rapidly by surface diffusion until they find a "kink," 
frequently a screw-type dislocation

SiCl4
H2

HCl

SiCl2

SiCl2

SiCl4

desorbs
SiCl

solid
Si

adsorb
SiCl

adsorb
SiCl 422 +⇔+



Dean P. Neikirk  © 1999, last update November 14, 2002 6 Dept. of ECE, Univ. of Texas at Austin

Deposition rate limiters

• reaction rate limited
– growth rate limited by chemical 

kinetics
– conventional exp(-E/kT) behavior
– also depends on reactant partial 

pressures
• mass transfer limited

– reaction rate very “fast” 
compared to diffusion across 
stagnant boundary layer

– growth rate weakly dependent on 
temperature
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• operate in the mass-transfer 
regime to prevent extreme 
sensitivity to temperature 
variations across and between 
wafers

adapted from Sze, 
2nd ed.,  p. 62.
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Comparison of silicon VPE sources

• silicon tetrachloride:
– highest temperature required to produce SiCl2
– most stable chlorosilane
– least deposited silicon per gas input

• trichlorosilane:
– approx. 50˚C lower growth temperature

• dichlorosilane:
– lowest temperature of chlorosilane processes
– most efficient deposition per gas input

• silane:
– have to be careful to avoid poly growth

reactant growth rate 
(µm / min) 

temp. (°C) allowed oxidizer 
(ppm) 

SiCl4 ~0.4 – 1.5 1150 – 1250 5 - 10 
SiHCl3 ~0.4 – 2 1100 – 1200 5 - 10 
SiH2Cl2 ~0.4 – 3 1050 – 1150 < 5 

SiH4 ~0.2 – 0.3 950 – 1050 < 2 
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Typical process

• hydrogen backfill and flush
• reactor heating, 

– temperature equilibration
– H2 atmosphere, elevated temperature causes reduction 

(removal)  of surface oxides
• in situ etch

– HCl etch @ 1150-1200˚C for 5 min. to remove thin surface layer 
of silicon

• H2 flush of HCl, set temperature for growth
• establish source gas, dopant gas flows
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Doping and autodoping

• intentional dopants added to gas stream:
– boron,  B2H6
– phosphorus,  PH3
– arsenic,  AsH3

• in addition to intentional impurities have impurity introduction and 
redistribution:

– sources
• conventional diffusion in crystal
• gas stream doping of epi due to evaporation of Si, dopants, reactor materials

chamber contamination

susceptor

intentional dopants
adjacent wafers

auto doping

• minimum background 
impurity concentration 
due to reactor, etc. 
contaminants  ≈ 1014/cm3
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Autodoping

• in addition to reactor contaminants also have evaporation and 
diffusion of dopants from the wafers themselves.

• combined diffusion and evaporation-induced doping dominate the 
first ~2µm of epi growth
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Problems in bipolar design with epi

• typical, idealized configuration for n-p-n transistor:

n+ n+
n epi

p substrate
buried n+ layer

E B C

• problems:
– lateral autodoping

• dopant from n+ regions evaporates into stagnant layer, diffuses 
laterally, dopes adjacent areas

– pattern shift
• growth process shifts position of steps on substrate
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Lateral Autodoping
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Pattern Shift in Epi Growth

• in bipolar process:
– 50-100 nm steps in silicon 

surface from initial oxide mask 
and from oxidation during 
drive of n+ buried layer

– must maintain steps for 
subsequent alignment

n+ burried “sub-
collector”

n epi-layer
pattern shift

• during epi growth:
– growth is lateral on 

microscopic scale
– growth rate depends on crystal 

surface orientation
– causes shift and distortion of 

buried layer pattern
• pattern shift:

– increases with increasing growth rate and decreasing growth temperature
– is minimized for:

• <111> Si by misorienting surface by 2-5˚
– worst case design rule:

• shift = layer thickness
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Heteroepitaxy

• growth of dissimilar film/substrate combination
• what do you need?

– chemical compatibility
– thermal compatibility
– “crystal” compatibility

• similar lattice structure
• similar lattice constants

• examples
– silicon-on-sapphire

• violates lattice match
– AlxGa1-xAs system

skip to metals
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Silicon on Sapphire

• heteroepitaxial process, usually pyrolisis of silane at 1000˚-
1050˚C, ≈ 1 µm thick

• sapphire chosen for high temperature, chemical stability
– lattice mismatched at interface
– aluminum silicate formed at interface
– aluminum autodoping from substrate
– thermal expansion coefficient mismatch

• high defect density:
– stacking faults, misfit dislocations
– density ≈ inverse with distance to interface
– Very short minority-carrier lifetimes

• cannot be used for bipolar IC's

• used only in MOS devices for
– radiation hardness
– latch-up immunity
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Molecular Beam Epitaxy

• non-CVD vapor phase epitaxy via evaporation of material in ultra-
high vacuum environment.  By utilizing very low growth rates (≈ 
1µm/hour) can tailor doping profiles and composition on a 
monolayer scale.

– growth temperatures  400° - 800°C
– background vacuum pressures ≈ 10-11 Torr
– monolayer formation time > 2 days
– silicon, SiGe, GaAs, AlGaAs, II-VI materials all grown

• machine design:
– source materials evaporated from effusion cells

• (Si MBE uses e-beam evaporators for Si source)
– temperature control critical, up to 1600°C
– beams interrupted with mechanical shutters to control composition 

and doping
– all growth chamber surfaces cooled to LN2 temp to prevent impurity 

incorporation in films
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Silicon Molecular Beam Epitaxy

• process requires:
– ultra high vacuum system for deposition
– very clean initial wafer surface

• flash decompose protective thin oxide in UHV @ 750-850˚C
• growth temperature 450-850˚C 
• epitaxial materials grown:

– silicon with very abrupt doping profiles
– metal silicides: NiSi2, Co2Si, etc.
– GexSi1-x/Si

• applications:
– buried silicides to replace buried layers in  bipolar
– metal base transistor, permeable base transistor
– HEMTs, HBTs, superlattice devices
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Summary Slide

• Epitaxy
• Silicon VPE growth
• Doping and autodoping
• Pattern Shift in Epi Growth
• Heteroepitaxy
• Epitaxial Growth of GaAs
• next topic: metallization
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