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film

substrate

hfilm

Etching terminology

• bias B
– B  ≡ df - dm (i.e., twice the “undercut)

• anisotropy A
– A film ≡ 1 - vl/ vv

• vl ≡ lateral etch rate 
• vv ≡ vertical etch rate    

– for films etched just to completion
• Af = 1 - |B| / 2hf

– hf   ≡ film thickness

– Af  = 0     isotropic 
– Af   = 1     perfectly anisotropic

dfilm
dfilm

dmask

etch mask
dmask
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Impact undercut and feature aspect ratio

• example: want film to have “equal” lines and spaces after etch

dmask

dfilm dfilm dfilm dfilm

hfilm
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• can we compensate for bias (undercut) by adjusting the mask?

– recall | B | = df – dm       « dm = df - | B |
– but for films etched just to completion | B | = 2 hf ( 1 - Af )
– so

• hf / df is the feature aspect ratio
• since dm > 0

– if aspect ratio is << 1 anisotropy is not needed
– if aspect ratio is >> 1 need high anisotropy (i.e., Af ~ 1)!
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Selectivity of etches

• need etch that removes film much faster than either the 
etch mask or “substrate”

• required selectivities depend on
– uniformity of film thickness 
– uniformity of etch rates 
– anisotropy of etch rates 
– overetch required 
– acceptable loss of linewidth
– acceptable “substrate” loss
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Selectivity and Over-etch time

• how long must you etch?
– etch time = film thickness / film etch rate

• BUT
– what if film thickness is not uniform?

• etch time = largest film thickness / film etch rate
– example: conformal film over a step, perfectly anisotropic etch

hf

hstep

nominal etch time 
t = hf / vf

hstep

– must continue etch for time = hstep / vfilm to clear “residue”
• total etch time is then 

T = hf/vf + hstep/vf =   hf/vf • ( 1 + ∆)
– ∆ is the fractional over-etch time,

• here ∆ = hstep / hfilm
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Film -to- substrate selectivity

• does over-etch matter?
– what about “substrate” exposed during over-etch period?

over-etch etch time 
t = hstep / vf

hsub = t•vsub

• substrate is “lost” during overetch
– hsub = tover • vsub = ( hstep / vf )•vsub

= hstep•(vsub / vf)
– but vf / vsub is the film-to-substrate selectivity Sfs, so

– Sfs = hstep / hsub

• recalling ∆ = hstep / hfilm we get 
• Sfs = ( hfilm / hsub ) • ∆
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Effects of non-uniformities

• what if things aren’t all uniform:
– etch rate:   vf•(1 ± φf)
– thickness:  hf•(1 ± δf)
– so now etch time is
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– to ensure complete etch you must use the longest time:

• how long is the “substrate” exposed?
– shortest time substrate could be coverd by film: consider thinnest film 

removed at fastest film etch rate! ( )
( )ff

ff

v

h
tcovered φ+⋅

δ−⋅
=

1

1

( )
( ) ( ) ( )

( )
4342144 344 21
coveredsubtimetimeetchtotal

exposed
ff

ff

ff

ff

v

h

v

h
t

.

1

1
1

1

1

φ+⋅
δ−⋅

−∆+⋅
φ−⋅
δ+⋅

=• so the substrate is exposed to 
the etch for a time

• so the amount of substrate lost is



Dean P. Neikirk 7 Dept. of ECE, Univ. of Texas at Austin

Example results for film - substrate 
selectivity

• etch rate uniformity 
φf = 0.1

• film thickness 
uniformity δf = 0.05
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perfectly 
anisotropic 

vertical etch, btoh 
mask and film

Afilm < 1, Amask < 1
Afilm = 1, but Amask < 1

Film -to- mask selectivity

• need to consider “loss of linewidth” 
due to mask erosion

– function of mask edge profile and 
anisotropy of etch (both mask 
and film!)

mask
film

loss of linewidth W = Omask - Ofilm

no linewidth loss

vvert, mask

vvert, film

vvert, film

vhorz, mask
vvert, mask vhorz, mask

vvert, mask

vvert, film

vhorz, film

OmaskOfilm
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Film -to- mask selectivity

• need to consider “loss of linewidth” due to mask erosion
– function of:

• anisotropy of etch (both mask and film!)
• also a function of the mask edge profile

vhorz, film

vhorz, mask

vvert, mask

vvert, film

W/2

• should also include impact of various non-uniformites
• film thickness: hf•(1 ± δf)
• etch rates:

• mask: vm•(1 ± φm)
• film: vf•(1 ± φf)
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Film -to- mask 
selectivity

• non- uniformities:
– etch rate:   vf•(1 ± φf)
– thickness:  hf•(1 ± δf)

• to ensure complete etch you must use the longest time:
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• during this time two terms contribute to lateral mask erosion:
– vertical etch of mask combined with slope

• plus simple horizontal etch
• total mask erosion is just sum of 

terms:

assume 
perfectly 

anisotropic 
etch of film
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• so total mask edge movement is
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– or

– let’s use worst case mask etch so

• or

– NOTE THIS ASSUMED PERFECTLY ANISOTROPIC ETCH OF FILM!!!
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Sample results for film - mask 
selectivity

• etch rate uniformity φf  & φm = 0.1
• film thickness uniformity δf = 0.05

∆ = 1, Am = 0, θ = 60Û

∆ = 1, Am = 0, θ = 90Û

∆ = 0.2, Am = 0, θ = 60Û

∆ = 0.2, Am = 1, θ = 60Û

∆ = 1, Am = 1, θ = 60Û
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Wet chemical etching

• dominant etch process through late 1970’s
• tends to be isotropic

– A ~ 0
– exception: anisotropic crystal etches

• for silicon etch rates along various crystal directions can vary
widely

– (111) tends to be slowest

• tends to produce high selectivities
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Plasma assistant pattern transfer

• includes
– ion milling, sputtering
– plasma etching
– reactive ion etching (RIE)

• all use plasmas
– typical pressures 10-3 - 10 Torr

• mean free paths 10 mm - 5 µm
• number density 1013 - 1017 cm-2

– typical ion densities ~109 - 1012 cm-2

• most gas molecules are NOT ionized

– temperature
• electron: ~104 K
• gas: ~ambient
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• electron and ion mobilities are very different
– leads to separation of charge in rf discharge

• electrons can “follow” field reversals, ions cannot
• plasma can act like a diode

– dc potentials can be developed even for pure ac drive

RF discharges and potentials

ion 
sheaths plasma

driven electrode

ground electrode

floating surface

0

Vp

Vf

Vt

d
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vo
lt

ag
e

powered
electrode

grounded
electrode• typical parameters

– ac frequency: 13.56 MHz, other industrially assigned
– dc voltages depend on ratio of powered -to- grounded electrode areas

• tens (~equal areas) to hundreds of volts possible (small powered area wrt 
grounded)
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Ion bombardment in plasma discharge

• dc bias voltage / field 
between plasma and 
electrode accelerates 
ions towards surface

– positive ions strike 
surface 
anisotropically

electric field
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– recall most gas 
molecules are 
neutral

• still strike surface 
isotropically
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Sputtering and ion milling

• if ion energy is ~500 eV substantial sputtering of “target” 
occurs
– inert gas (Ar) typically used

• sputtering systems
– accelerating potential from “self bias”

• powered electrode area << ground area
• sample placed on powered electrode

• ion mill
– separate ion generation, acceleration, and sample chamber

• process is purely physical
– “everything” sputters
– very low selectivity



Dean P. Neikirk 18 Dept. of ECE, Univ. of Texas at Austin

Plasma etching

• use reactive species produced in a plasma discharge to drive chemistry
– need to produce volatile reaction products

• usually try to avoid ion bombardment
– keep accelerating voltages small
– process is mainly chemical

• high selectivity
• low anisotropy

wafers

plasma
barrel
system

plasma

driven electrode

ground electrode

wafers

planar
system
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Reactive Ion Etching (RIE)

• similar to sputter etcher but replace noble gas with reactive 
gases like to those used in plasma etching
– want high energy ions at surface

• high accelerating voltages
– substrates on powered electrode
– asymmetric electrodes 

• area of powered electrode < grounded electrode
• low pressures 10-3 - 10-1 Torr

• in both plasma etching and RIE feed- gas composition 
produces the reactive species necessary for etching
– chemistry tends to be isotropic
– ion bombardment of surfaces generates the anisotropy in 

plasma assisted pattern transfer
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Ion- induced and ion- enhanced gas 
phase etching

• ion-induced reactions
– expose Si to Cl2: no etching of the Si occurs
– expose Si to Ar+ ion mill beam: etch rate < 0.5 nm/min
– expose to both: etch rate ~ 10 nm/min

• note NO Cl2 plasma was present in this example

• ion-enhanced reactions
– XeF2 will spontaneously etch Si: ~0.5 nm/min
– but if expose to both XeF2 and Ar+ ion beam etch rate 

increases dramatically (~6 nm/min)
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CF4 plasma etching

• electron impact in plasma produces reactive radicals
– CF4 + e  D CF3

+ + F* + 2e
– competing reactions between free F and CF3 tends to keep F 

concentration low
– free fluorine etches both Si and SiO2, but etches Si faster

• Si + 4F " SiF4 (g)
• SiO2 + 4F " SiF4 (g) + O2

– these are isotropic!
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• add O2 to gas mix
– CF3

+ + O +  e " COF2 +  F*

• competes with F for 
CF3, drives [F] up

• etch rates 
increase

• peak selectivity ~15 (Si:SiO2)
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Ion assisted CFx etching

• add H2 to CF4 gas mix
– CF4 + e D CF3

+ + F* + 2e
– H2 + F* " HF
– so addition of H2 drives [F] down

• reduces Si etch rate
• BUT CF3 will NOT etch SiO2 UNLESS there is ion bombardment

– CFx + SiO2 + “damage” " SiF4 (g) +  (CO, CO2, COF2, etc.)

– CFx + Si " SiF4 (g) +  C-F (polymer) " stops etch!
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• summary:
– CF4 + H2 (40%) :  SiO2 / Si

selectivity ~ 10:1
• can improve oxide-to-silicon 

selectivity by decreasing F:C 
ratio: use CHF3

– CF4 + O2 (10%) :  Si / SiO2
selectivity ~ 15:1
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Mechanisms for ion-enhancement and 
induced anisotropy

• example of polymer formation:
– Si etched in Cl2 plasma (~isotropic)

• e + Cl2 → e + 2Cl
• Si + xCl   →  SiClx ↑

– “recombinant” species C 2 F6 

• e + C2F6 →  2CF3 + e
• [CF3 + Cl]x →  [CF3Cl]3 (polymer)

• at ~85% C2F6 no undercutting occurs

ion 
bombardment

damage

ion 
bombardment

polymer

surface damage
induced anisotropy

surface inhibitor
mechanism anisotropy
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Aluminum plasma etch

• use volatile aluminum chloride
– Al + CCl3+ + (bmbrdmnt) " AlCl3 (g) + C

– Al + 3Cl*" AlCl3 (g)
– problems

• initial Al2O3 on surface harder to etch (mostly by CCl3+)
• selectivity wrt SiO2 < ~20
• selectivity wrt photoresist  < ~15

– can also use BCl3, may include some O2
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Etch summary

material 
etched 

etch gas(es) volatile product selectivities 

Si CF4 + O2, etc. SiF4 15:1 (Si:SiO2) 
SiO2 CF4 + H2, etc. SiF4 20:1 (SiO2:Si) 
organics O2 CO2, H2O high 
Al CCl4, BCl3, 

etc. 
AlCl3 15:1 (Al:SiO2); 

few:1 (Al:Si) 
Mo CF4 MoF6  
W CF4 WF6  
 

• things that are hard to dry etch
– copper: no volatile reaction products
– use CMP instead


