Etching terminology

- bias B
 - $B = d_f d_m$ (i.e., twice the "undercut)
- anisotropy A

$$- A_{\text{film}} \equiv 1 - v_{\text{I}} / v_{\text{v}}$$

- $v_1 \equiv$ lateral etch rate
- $v_v \equiv vertical etch rate$
- for films etched just to completion
 - $A_f = 1 |B| / 2h_f$
 - $-h_f \equiv film thickness$
- $A_f = 0$ isotropic
- A_f = 1 perfectly anisotropic

Impact undercut and feature aspect ratio

- example: want film to have "equal" lines and spaces after etch
- can we compensate for bias (undercut) by adjusting the mask?
 - recall $| \mathbf{B} | = \mathbf{d}_{f} \mathbf{d}_{m} \Rightarrow \mathbf{d}_{m} = \mathbf{d}_{f} | \mathbf{B} |$
 - but for films etched just to completion $|B| = 2 h_f (1 A_f)$
 - **SO** $d_{mask} = d_f \cdot \left[1 - 2 \frac{h_f}{d_f} (1 - A_f) \right]$
 - h_f / d_f is the feature aspect ratio

• since
$$\mathbf{d}_{\mathbf{m}} > \mathbf{0}$$
 $\left[1 - 2\frac{h_f}{d_f}(1 - A_f)\right] > 0 \implies A_f > 1 - \frac{1}{2 \cdot (h_f/d_f)}$

- if aspect ratio is << 1 anisotropy is not needed
- if aspect ratio is >> 1 need high anisotropy (i.e., $A_f \sim 1$)!

_

Selectivity of etches

- need etch that removes film much faster than either the etch mask or "substrate"
- required selectivities depend on
 - uniformity of film thickness
 - uniformity of etch rates
 - anisotropy of etch rates
 - overetch required
 - acceptable loss of linewidth
 - acceptable "substrate" loss

Selectivity and Over-etch time

- how long must you etch?
 - etch time = film thickness / film etch rate
- BUT
 - what if film thickness is not uniform?
 - etch time = largest film thickness / film etch rate
 - example: conformal film over a step, perfectly anisotropic etch

- must continue etch for time = h_{step} / v_{film} to clear "residue"
 - total etch time is then

$$\mathbf{T} = \mathbf{h}_{f} / \mathbf{v}_{f} + \mathbf{h}_{step} / \mathbf{v}_{f} = \mathbf{h}_{f} / \mathbf{v}_{f} \bullet (\mathbf{1} + \Delta)$$

- Δ is the fractional over-etch time,
 - here $\Delta = h_{step} / h_{film}$

Film -to- substrate selectivity

- does over-etch matter?
 - what about "substrate" exposed during over-etch period?

over-etch etch time

substrate is "lost" during overetch

$$- h_{sub} = t_{over} \bullet v_{sub} = (h_{step} / v_{f}) \bullet v_{sub}$$
$$= h_{step} \bullet (v_{sub} / v_{f})$$

- but v_f / v_{sub} is the film-to-substrate selectivity S_{fs} , so

- recalling $\Delta = h_{step} / h_{film}$ we get
 - $S_{fs} = (h_{film} / h_{sub}) \bullet \Delta$

Effects of non-uniformities

- what if things aren't all uniform:
 - etch rate: $v_f \cdot (1 \pm \phi_f)$
 - thickness: $h_f \cdot (1 \pm \delta_f)$

- thickness:
$$h_f \bullet (1 \pm \delta_f)$$

- so now etch time is $t = \frac{h_f \cdot (1 \pm \delta_f)}{v_f \cdot (1 \pm \phi_f)} \cdot (1 + \Delta)$

- to ensure complete etch you must use the longest time: $t = \frac{h_f \cdot (1+\delta_f)}{v_f \cdot (1-\phi_f)} \cdot (1+\Delta)$

- how long is the "substrate" exposed? •
 - shortest time substrate could be coverd by film: consider thinnest film $t_{covered} = \frac{h_f \cdot (1 - \delta_f)}{v_f \cdot (1 + \phi_f)}$ removed at fastest film etch rate!

 $h_s = v_s \cdot t_{exposed}$

so the amoun

t of substrate lost is

$$= v_{s} \cdot \frac{h_{f}}{v_{f}} \cdot \left[\frac{(1+\delta_{f}) \cdot (1+\Delta)}{(1-\phi_{f})} - \frac{(1-\delta_{f})}{(1+\phi_{f})}\right] = \left(\frac{v_{s}}{v_{f}}\right) \cdot h_{f} \cdot \left[\frac{(1+\delta_{f}) \cdot (1+\Delta)}{(1-\phi_{f})} - \frac{(1-\delta_{f})}{(1+\phi_{f})}\right]$$

 $\left(S_{fs}\right)^{-1}$

 $t_{exposed} = \frac{h_f \cdot (1 + \delta_f)}{v_f \cdot (1 - \phi_f)} \cdot (1 + \Delta) - \frac{h_f \cdot (1 - \delta_f)}{v_f \cdot (1 + \phi_f)}$

Example results for film - substrate selectivity

Dept. of ECE, Univ. of Texas at Austin

Film -to- mask selectivity

Film -to- mask selectivity

- need to consider "loss of linewidth" due to mask erosion
 - function of:
 - anisotropy of etch (both mask and film!)
 - also a function of <u>the mask edge profile</u>

- should also include impact of various non-uniformites
 - film thickness: $h_f \cdot (1 \pm \delta_f)$
 - etch rates:
 - mask: $v_m \bullet (1 \pm \phi_m)$
 - film: v_f•(1 ± φ_f)

Film -to- mask selectivity

• so total mask edge movement is $\frac{W}{2} = \left(v_{horz, mask} + v_{vert, mask} \cdot \cot \theta\right) \cdot t_{etch}$

$$- \mathbf{or} \qquad W = 2 \cdot v_{vert,mask} \left(\frac{\frac{v_{horz,mask}}{v_{vert,mask}} + \cot \theta}{1 - A_{mask}} + \cot \theta \right) \cdot \frac{h_f \cdot (1 + \delta_f)}{v_f \cdot (1 - \phi_f)} \cdot (1 + \Delta)$$

let's use worst case mask etch so

$$W = 2 \cdot \frac{v_{mask} \cdot (1 + \phi_m)}{\frac{v_f}{\frac{1/S_{fm}}{}}} \cdot ([1 - A_{mask}] + \cot \theta) \cdot \frac{h_f \cdot (1 + \delta_f)}{(1 - \phi_f)} \cdot (1 + \Delta)$$

or
$$S_{fm} = 2 \cdot \frac{h_f}{W} \cdot \frac{(1 + \phi_m) \cdot (1 + \delta_f) \cdot (1 + \Delta)}{(1 - \phi_f)} \cdot ([1 - A_{mask}] + \cot\theta)$$

– NOTE THIS ASSUMED PERFECTLY ANISOTROPIC ETCH OF FILM!!!

Sample results for film - mask selectivity

- etch rate uniformity $\phi_f \& \phi_m = 0.1$
- film thickness uniformity $\delta_f = 0.05$

Wet chemical etching

- dominant etch process through late 1970's
- tends to be isotropic
 - A ~ 0
 - exception: anisotropic crystal etches
 - for silicon etch rates along various crystal directions can vary widely
 - (111) tends to be slowest
- tends to produce high selectivities

Plasma assistant pattern transfer

includes

- ion milling, sputtering
- plasma etching
- reactive ion etching (RIE)
- all use plasmas
 - typical pressures 10⁻³ 10 Torr
 - mean free paths 10 mm 5 μm
 - number density 10¹³ 10¹⁷ cm⁻²
 - typical ion densities $\sim 10^9 10^{12} \text{ cm}^{-2}$
 - most gas molecules are NOT ionized
 - temperature
 - electron: ~10⁴ K
 - gas: ~ambient

RF discharges and potentials

- electron and ion mobilities are very different
 - leads to separation of charge in rf discharge
 - · electrons can "follow" field reversals, ions cannot
- plasma can act like a diode
 - dc potentials can be developed even for pure ac drive

- typical parameters
 - ac frequency: 13.56 MHz, other industrially assigned
 - dc voltages depend on ratio of powered -to- grounded electrode areas
 - tens (~equal areas) to hundreds of volts possible (small powered area wrt grounded)

Ion bombardment in plasma discharge

- dc bias voltage / field between plasma and electrode accelerates ions towards surface
 - positive ions strike V_p + |V_t| surface anisotropically
 - recall most gas molecules are neutral
 - still strike surface isotropically

sample on powered electrode

Sputtering and ion milling

- if ion energy is ~500 eV substantial sputtering of "target" occurs
 - inert gas (Ar) typically used
- sputtering systems
 - accelerating potential from "self bias"
 - powered electrode area << ground area
 - sample placed on powered electrode
- ion mill
 - separate ion generation, acceleration, and sample chamber
- process is purely physical
 - "everything" sputters
 - very low selectivity

Plasma etching

- use reactive species produced in a plasma discharge to drive chemistry
 - need to produce volatile reaction products
- usually try to avoid ion bombardment
 - keep accelerating voltages small
 - process is mainly chemical
 - high selectivity
 - low anisotropy

Dean P. Neikirk

Reactive Ion Etching (RIE)

- similar to sputter etcher but replace noble gas with reactive gases like to those used in plasma etching
 - want high energy ions at surface
 - high accelerating voltages
 - substrates on powered electrode
 - asymmetric electrodes
 - area of powered electrode < grounded electrode
 - low pressures 10⁻³ 10⁻¹ Torr
- in both plasma etching and RIE feed- gas composition produces the reactive species necessary for etching
 - chemistry tends to be isotropic
 - ion bombardment of surfaces generates the anisotropy in plasma assisted pattern transfer

Ion- induced and ion- enhanced gas phase etching

- ion-induced reactions
 - expose Si to Cl₂: no etching of the Si occurs
 - expose Si to Ar⁺ ion mill beam: etch rate < 0.5 nm/min
 - expose to both: etch rate ~ 10 nm/min
 - note NO Cl₂ plasma was present in this example
- ion-enhanced reactions
 - XeF₂ will spontaneously etch Si: ~0.5 nm/min
 - but if expose to both XeF₂ and Ar⁺ ion beam etch rate increases dramatically (~6 nm/min)

CF₄ plasma etching

- electron impact in plasma produces reactive radicals
 - $CF_4 + e \leftrightarrows CF_3^+ + F^* + 2e$
 - competing reactions between free F and CF₃ tends to keep F concentration low
 - free fluorine etches both Si and SiO₂, but etches Si faster
 - Si + 4F \rightarrow SiF₄ (g)
 - $SiO_2 + 4F \rightarrow SiF_4(g) + O_2$
 - these are isotropic!
- add O_2 to gas mix
 - $CF_3^+ + O + e \rightarrow COF_2 + F^*$
 - competes with F for CF₃, drives [F] up
 - etch rates increase
 - peak selectivity ~15 (Si:SiO₂)

Ion assisted CF_x etching

- add H_2 to CF_4 gas mix
 - $CF_4 + e \leftrightarrows CF_3^+ + F^* + 2e$
 - H₂ + F^{*} \rightarrow HF
 - so addition of H₂ drives [F] down
 - reduces Si etch rate
- BUT CF₃ will NOT etch SiO₂ UNLESS there is ion bombardment
 - CF_x + SiO₂ + "damage" → SiF₄ (g) + (CO, CO₂, COF₂, etc.)
 - $CF_x + Si \rightarrow SiF_4$ (g) + C-F (polymer) \rightarrow stops etch!
- summary:
 - CF₄ + H₂ (40%) : SiO₂ / Si selectivity ~ 10:1
 - can improve oxide-to-silicon selectivity by decreasing F:C ratio: use CHF₃
 - CF₄ + O₂ (10%) : Si / SiO₂ selectivity ~ 15:1

Mechanisms for ion-enhancement and induced anisotropy

ion

surface inhibitor mechanism anisotropy

- example of polymer formation:
 - Si etched in Cl₂ plasma (~isotropic)
 - $e + Cl_2 \rightarrow e + 2Cl$
 - Si + xCl \rightarrow SiCl_x \uparrow
 - "recombinant" species C₂ F₆
 - $e + C_2F_6 \rightarrow 2CF_3 + e$
 - $[CF_3 + CI]_x \rightarrow [CF_3CI]_3$ (polymer)
 - at ~85% C₂F₆ no undercutting occurs

Aluminum plasma etch

- use volatile aluminum chloride
 - AI + CCI₃⁺ + (bmbrdmnt) → AICI₃ (g) + C
 - AI + 3CI^{*} → AICI₃ (g)
 - problems
 - initial Al₂O₃ on surface harder to etch (mostly by CCl₃⁺)
 - selectivity wrt SiO₂ < ~20
 - selectivity wrt photoresist < ~15
 - can also use BCl₃, may include some O₂

Etch summary

material etched	etch gas(es)	volatile product	selectivities
Si	$CF_4 + O_2$, etc.	SiF ₄	15:1 (Si:SiO ₂)
SiO ₂	$CF_4 + H_2$, etc.	SiF ₄	20:1 (SiO ₂ :Si)
organics	O ₂	CO ₂ , H ₂ O	high
AI	CCl ₄ , BCl ₃ , etc.	AICI ₃	15:1 (AI:SiO ₂);
Мо	CF ₄	MoF ₆	
W	CF ₄	WF ₆	

- things that are hard to dry etch
 - copper: no volatile reaction products
 - use CMP instead