Performance characteristics and the SIA Roadmap (1997)

- transistor count

Year of first product shipment	1997	1999	2001	2003	2006	2009	2012
Memory							
bits @ samples/intro	256M	1G	*	4G	16G	64G	256G
bits @ production	64M	256M	1G	1G	4G	16G	64G
Bits/cm ${ }^{2}$ @ sample/intro	96M	270M	380M	770 M	2.2B	6.1B	17B
DRAM chip size, mm^{2}	$100 \mathrm{~mm}^{2}$	$140 \mathrm{~mm}^{2}$	$160 \mathrm{~mm}^{2}$	$200 \mathrm{~mm}^{2}$	$280 \mathrm{~mm}^{2}$	$390 \mathrm{~mm}^{2}$	$550 \mathrm{~mm}^{2}$
Logic (high volume, cost sensitive)							
Logic transistors $/ \mathrm{cm}^{2}$ (packed, including onchip SRAM)	3.7M	6.2M	10M	18M	39M	84M	180M
Microprocessor transistors/chip	11M	21M	40M	76M	200M	520M	1.4B
MPU chip size, mm^{2}	$110 \mathrm{~mm}^{2}$	$125 \mathrm{~mm}^{2}$	$140 \mathrm{~mm}^{2}$	$150 \mathrm{~mm}^{2}$	$180 \mathrm{~mm}^{2}$	$220 \mathrm{~mm}^{2}$	$260 \mathrm{~mm}^{2}$
Logic (low volume; ASICs)							
Usable transistors/cm ${ }^{2}$	8M	14M	16M	24M	40M	64M	100M

Performance characteristics and the SIA Roadmap (1997)

- performance

Year of first product shipment	1997	1999	2001	2003	2006	2009	2012
Chip frequency							
on chip. local, high perf.	750 MHz	1.25 GHz	1.5 GHz	2.1 GHz	3.5 GHz	6 GHz	10 GHz
on chip, global, high perf.	750 MHz	1.2 GHz	1.4 GHz	1.6 GHz	2 GHz	$\begin{gathered} 2.5 \\ \mathrm{GHz} \end{gathered}$	3 GHz
on chip, cost sensitive	400 MHz	600	700	800	1.1 GHz	1.4	1.8
chip to board, high perf.	750 MHz	1.2 GHz	1.4 GHz	1.6	2	2.5	3
Max number of wiring levels	6	~ 7	7	7	~ 8	8-9	9

Performance characteristics and the SIA Roadmap (1997)

- wafer, package dimensions
$\left.\begin{array}{|l|c|c|c|c|c|c|c|}\hline \begin{array}{l}\text { Year of first product } \\ \text { shipment }\end{array} & 1997 & 1999 & 2001 & 2003 & 2006 & 2009 & 2012 \\ \hline \begin{array}{l}\text { Lithography field size } \\ (\mathrm{mm} \text { x mm; mm²) }\end{array} & \begin{array}{c}22 \times 22 \\ 484 \mathrm{~mm}^{2}\end{array} & \begin{array}{c}25 \times 32 \\ 800 \mathrm{~mm}^{2}\end{array} & \begin{array}{c}25 \times 34 \\ 850 \mathrm{~mm}^{2}\end{array} & \begin{array}{c}25 \times 36 \\ 900 \mathrm{~mm}^{2}\end{array} & \begin{array}{c}25 \times 40 \\ 1000 \mathrm{~mm}^{2}\end{array} & \begin{array}{c}25 \times 44 \\ 1100 \mathrm{~mm}^{2}\end{array} & \begin{array}{c}1300 \mathrm{~mm}^{2}\end{array} \\ \hline \hline \begin{array}{l}\text { Wafer diameter (mm) }\end{array} & \begin{array}{c}200 \mathrm{~mm} \\ (8 ")\end{array} & \begin{array}{c}300 \mathrm{~mm} \\ (12 ")\end{array} & 300 \mathrm{~mm} & 300 \mathrm{~mm} & 300 \mathrm{~mm} & 450 \mathrm{~mm} & 450 \mathrm{~mm} \\ \left(18 "^{\prime}\right)\end{array}\right]$

Silicon Semiconductor Integrated Circuits

- Silicon makes up over 26% of the earth's crust, mainly in the form of silicon dioxide, SiO_{2}, more commonly known as sand or quartz
- For semiconductor use, the silicon must be purified so that there are no more than about ten impurity atoms to every billion silicon atoms
- Large diameter (> 8 inch), single crystal silicon boules weighing more than 100 lbs are routinely grown from a melt at over $2500^{\circ} \mathrm{F}$

What does silicon look like?

- fundamentally, it looks like diamond!
- each atom bonds to four neighbors in a tetragonal configuration

- the atoms are arranged into a facecentered cubic crystal structure

How to make a MOSFET

- What do you need?
- a good semiconductor (SILICON)
- a p-n junction (boron-doped Si - phosphorus-doped Si)
- a good insulator (SILICON DIOXIDE)
- a good conductor (poly-silicon and aluminum, copper)

Silicon Device Processing

- The construction of a silicon integrated circuit uses three basic processes:
- Oxidation:
- by heating silicon to about $2000^{\circ} \mathrm{F}$ in oxygen the surface of the silicon becomes silicon dioxide (glass), a very good insulator.
- Photolithography:
- is a way of producing a pattern of bare areas and covered areas on a substrate. This serves as a mask for etching of the silicon dioxide.
- Diffusion:
- is a process for the introduction of controlled amounts of impurities into the bare areas on the silicon (as little as one impurity atom per million silicon atoms). This allows the formation of p -n diodes in the substrate.
- When all these steps are combined, along with metal wires for connections between devices, an integrated circuit can be made.

How to make a MOSFET

start: bare silicon wafer

oxidize

apply photoresist (pr)

expose mask 1

How to make a MOSFET

develop pr

etch oxide

strip pr

introduce source drain dopants

How to make a MOSFET

coat pr, align mask 2, expose mask 2

develop pr, etch oxide

strip pr, re-oxidize to form gate insulator

How to make a MOSFET

coat pr, align mask 3, expose mask 3

develop pr, etch oxide, strip pr

How to make a MOSFET

metallize,

coat pr, align mask 4, expose, develop pr, etch metal

strip pr: FINISHED!

Performance characteristics and the SIA Roadmap (1997)

- device dimensions

Year of first product shipment	1997	1999	2001	2003	2006	2009	2012
Technology linewidth (dense lines, DRAM half pitch)	250 nm	180 nm	150 nm	130 nm	100 nm	70 nm	50 nm
isolated lines	200 nm	140 nm	120 nm	100 nm	70 nm	50 nm	35 nm
FET dimensions	4 nm	3 nm	2 nm	2 nm	1.5 nm	$<1.5 \mathrm{~nm}$	$<1.0 \mathrm{~nm}$
Tox (equiv. SiO_{2} thickness)							
Lgate	50 nm	36 nm	30 nm	26 nm	20 nm	15 nm	10 nm
xj	6	~ 7	7	7	~ 8	$8-9$	9
Max number of wiring levels							

MOSFET cross section

- modern integrated circuits contain millions of individual MOSFETS, each about 1/100 of a hair in size!

