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Bulk crystal growth

• melting points
– silicon: 1420˚ C
– GaAs: 1238˚ C
– quartz: 1732˚ C

• starting material: metallurgical-grade silicon
– by mixing with carbon, SiO2 reduced in arc furnace

• T > 1780˚C:    
SiC + SiO2 → Si + SiO + CO

– common impurities
• Al: 1600 ppm  (1 ppm = 5 x 1016 cm-3)
• B: 40 ppm
• Fe: 2000 ppm
• P: 30 ppm

– used mostly as an additive in steel
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Preparation of electronic-grade silicon

• gas phase purification used to produce high purity silicon
– ~ 600˚C
– crud + Si + HCl →

• SiCl4 (silicon tetrachloride)
• SiCl3H (trichlorosilane)
• SiCl2H2 (dichlorosilane)
• chlorides of impurities

– trichlorosilane (liquid at rm temp), further purification via fractional 
distillation

• now reverse reaction
– 2SiHCl3 + 2H2 (heat) → 2Si + 6HCl
– after purification get

• Al: below detection
• B: < 1 ppb (1 ppb = 5 x 1013 cm-3)
• Fe: 4 ppm
• P: < 2 ppb
• Sb: 1 ppb
• Au: 0.1 ppb
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Czochralski crystal growth

• silicon expands upon freezing (just like water)
– if solidify in a container will induce large stress

• CZ growth is “container-less”
images from Mitsubishi Materials 
Silicon
http://www.egg.or.jp/MSIL/english/
msilhist0-e.html
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Diameter control during CZ growth
pull direction

seed

rotation

images from Mitsubishi Materials Silicon
http://www.egg.or.jp/MSIL/english/msilhist0-e.html

• critical factor is heat flow from liquid to solid
– interface between liquid and solid is an isotherm

• temperature fluctuations cause problems!
– already grown crystal is the heat sink

• balance latent heat of fusion, solidification rate, pull rate, 
diameter, temperature gradient, heat flow

• diameter inversely proportional to pull rate (typically ~ mm/min)
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Diameter control during CZ growth
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• critical factor is heat flow from liquid to solid
– heat flux (power) balance

thermal diffusion in solid
from solidification interface 
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thermal diffusion in liquid
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Diameter control during CZ growth
• heat flow balance becomes
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– so critical factor is relation between temperature gradient in boule
and boule size 

• thermal current proportional to cross sectional area A and vpull
• if the only heat sink were at the end of the boule:

• thermal resistance inversely proportional to A, directly proportional 
to length of boule l

• temperature change (“voltage”) = Ithermal Rthermal

net effect: just what we got above!
dT/dx independent of diameter diameter doesn’t appear!!!
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Diameter control during CZ growth
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• but most of the heat is lost via radiation from the SIDES of the boule!
– thermal current still proportional to cross sectional area A ∝ (diameter)2

and vpull
– if the heat sink is from sides of boule:

• thermal resistance inversely proportional to perimeter ∝ diameter, 
• temperature change (“voltage”) = Ithermal Rthermal
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net effect: diameter is inversely proportional to pull rate
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Impurities in Czochralski Grown 
Silicon

• choice of crucible material is crucial:
– must be stable at high temperatures (~1500˚ C)
– carbon: saturates solution and causes poly growth
– refractories: too much metal in materials
– quartz: in exclusive use for silicon growth

• dissolution of quartz crucibles into melt is major concern:
– function of relative velocity between melt & crucible
– almost all oxygen present in silicon melt is due to the 

dissolution of the SiO2 crucible
– most of this oxygen evaporates in the form of SiO
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Doping and segregation effects during 
crystal growth

• when two dissimilar materials / phases are in contact, the 
concentration of an impurity across the interface is NOT 
NECESSARILY CONTINUOUS

– segregation (distribution) coefficient

• when a volume of liquid freezes, if k < 1, 
what is concentration in solid?

• must be less than in liquid
• what happens to extra impurities?

• rejected into melt → increased 
[impurity] in melt

• if Co is initial melt concentration, and X is 
fraction solidified
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Doping and segregation effects during 
crystal growth

Zone Refining k = 0.5
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• segregation effects can be used intentionally to purify 
semiconductor material
– zone refining consists of repeated passes through the solid by 

a liquid zone
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– float zone silicon used for high 
resistivity

images from Mitsubishi Materials Silicon
http://www.egg.or.jp/MSIL/english/msilhist0-e.html
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Oxygen in CZ Silicon

• concentrations typically in 1016 - 1018 cm-3 range
– segregation coefficient k ~ 1.25

• more in solid than liquid
– contact area between crucible and melt decreases as growth 

procedes
– oxygen content decreases from seed to tang end

• effects of oxygen in silicon
– ~ 95% interstitial; increases yield strength of silicon via 

"solution hardening" effect
– as-grown crystal is usually supersaturated (occurs above 

about 6 x 1017)
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Oxygen complexes in silicon

• usually donor-like
• two classes of complexes:

– "old thermal donors"
• very small silicon-oxygen atom clusters
• very rapid formation rates in 400-500˚ C range (≥ 1010/cm3sec)

– "new thermal donors"
• slow formation rate above 500˚ C
• slow dissolution rate at high temperature

– ~1013 cm-3 @ 2 hours, 900˚ C
– ~1011 cm-3 @ 2 hours, 1150˚ C

• donor behavior possibly due to surface states of large SiOx
complexes
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Gettering in Silicon Wafers

• devices fabricated only in the top five or ten microns of the wafer: 
use gettering to provide a sink for unwanted defects in the bulk of 
the wafer
– gettering sites provide sinks for impurities generated during 

the processing

“bulk” wafer

“device” region

back side damage

bulk faults

mobile impurities

• backside damage: (pre-gettering)
– mechanical damage produces high strain regions 
– impurities nucleate on dislocations; if wafer stresses are kept 

small during subsequent processing dislocations will remain 
localized on back
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Intrinsic Gettering and Oxygen 
Precipitates

• wafer starting material:
– initial oxygen content between ~3.5 and ~8 x 1017 cm-3

• denuded zone formation:
– high temperature step (1050˚ C) reduces interstitial oxygen 

content via diffusion of O to surface
– formation of internal gettering sites:

• low temp step (500-600˚ C) creates large reserve of small, stable 
oxygen precipitates

• higher temperature step (700-900˚ C) causes growth of larger SiOx
complexes

• subsequent thermal processing creates dislocation loops 
associated with SiOx complexes

– actual starting material oxygen concentration and process 
determined by trial device fab and performance evaluation.



Dean P. Neikirk  © 1999, last update October 3, 2002 15 Dept. of ECE, Univ. of Texas at Austin

Denuded zone

• preferential 
(decorating) etch 
used to reveal 
stacking faults and 
precipitates

– OSF: oxidation 
induced stacking 
faults

from: Sze, VLSI Technology, 2nd edition, p. 46.



Dean P. Neikirk  © 1999, last update October 3, 2002 16 Dept. of ECE, Univ. of Texas at Austin

Wafer preparation

• boule forming, orientation measurement
– old standard: “flat”perpendicular to <110> direction; 
– on large diameter “notch” used instead

inner diameter 
wafer saw

• wafer slicing
– <100> typically within ± 0.5˚
– <111>, 2˚ - 5˚ off axis

images from Mitsubishi Materials Silicon
http://www.egg.or.jp/MSIL/english/msilhist0-e.html
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Wafer prep (cont.)

• lapping
– grind both sides, flatness ~2-3 µm

• ~20 µm per side removed
• edge profiling
• etching

– chemical etch to remove surface damaged layer
• ~20 µm per side removed

• polishing
– chemi-mechanical polish, SiO2 / NaOH slurry

• ~25 µm per polished side removed
– gives wafers a “mirror” finish

• cleaning and inspection
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Wafer specifications

– warp: distance between highest and lowest points relative to 
reference plane

– bow: concave or convex deformation

 

wafer 
diam. 

thickness thickness 
variation 

bow warp 

150 mm 
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0.5mm 

675µm 
± 

25µm 

 
50µm 

 
60µm 

 

200 mm 
± 
 

    

300 mm 
± 

0.2mm 

775µm 
± 

25µm 

 
= 10µm 

  
= 100µm
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Wafer diameter trends

• desire is to keep number of chips (die) per wafer high, even 
as die size increases
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• challenge: thermal nonuniformities, convection currents 
become more significant as diameter grows
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Wafer specifications

Sematech

From Sematech document: International 300 mm 
Initiative, Technology Transfer # 97113407A-ENG

– “next” generation: 300 mm wafer diameter
– 25x25 mm die size

• yields 89 complete die
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Silicon wafer production

• 1999: 4.263 billion square inches, $5.883 billion
– $1.38 per square inch, $0.21 per square cm
– 100mm, 150mm: 2.808 billion square inches (65.9% of total)
– 200mm: 1.441 billion square inches (33.8%)
– 300mm: 0.014 billion square inches of silicon (0.3%)

• 2000, expected: 4.692 billion square inches, $6.475 billion
• 2001, expected: 5.204 billion square inches
• 2003, expected:

– 200mm: 2.892 billion square inches
– 300mm: 0.112 billion square inches

• from EE Times, “Advanced silicon substrates prices rise as 
wafer glut eases” by J.Robert Lineback Semiconductor 
Business News (01/12/00, 2:04 p.m. EST)

http://www.semibiznews.com/
http://www.semibiznews.com/
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Volume Silicon processing costs

• 2001 processing cost date
– reference: ICKnowledge, 

http://www.icknowledge.com/economics/wafer_costs.html
• advanced CMOS process, ~0.13 micron, 300mm wafers, ~25 mask 

levels:
– about $5 per cm2

– reference: ICKnowledge, http://www.icknowledge.com
– model assumes a 30,000 300mm wafer per month fab running at 90% 

of capacity 
• that’s about 21 million cm2 / month!
• about 40 wafer starts per hour

– 2001 world-wide wafer starts, 8” (200mm) equivalent: ~5 million wafers  
per month (~1.5billion sq. cm per month)

• from http://www.semichips.org/downloads/SICAS_Q4_01.pdf
• MOSIS (ref http://www.mosis.org/Orders/Prices/price-list-domestic.htm

– 1.5 micron cmos ~$200 per square mm, 5 to 20 parts per lot cost 
~$4K- $1K per cm2

– 0.18 micron ~$1-2K per square mm for 40 parts cost > ~$2.5K per 
cm2

http://www.icknowledge.com/economics/wafer_costs.html
http://www.icknowledge.com/economics/wafer_costs.html
http://www.icknowledge.com/
http://www.semichips.org/downloads/SICAS_Q4_01.pdf
http://www.mosis.org/Orders/Prices/price-list-domestic.htm
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Silicon Oxides: SiO2

• Uses:
– diffusion masks
– surface passivation
– gate insulator (MOSFET)
– isolation, insulation

• Formation:
– grown / “native”

• thermal: “highest” quality
• anodization

– deposited:
• C V D, evaporate, sputter

• vitreous silica: material is a GLASS 
under “normal” circumstances

– can also find “crystal quartz” in nature
• m.p. 1732˚ C; glass is “unstable” below 

1710˚ C
– BUT devitrification rate (i.e. 

crystallization)  below 1000˚ C negligible
network former

hydroxyl group

network modifier

silicon

bridging oxygen

non-bridging oxygen
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