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Ion Implantation

• alternative to diffusion for the introduction of dopants
• essentially a “physical” process, rather than “chemical”
• advantages:

– mass separation allows wide varies of dopants 
– dose control:

• diffusion 5 - 10%
• implantation:

– 1011 - 10 17 ions / cm2 ± 1 %
– 1014 - 1021 ions / cm3

– low temperature 
– tailored doping profiles
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Ion Implantation

• high voltage particle accelerator
– electrostatic and mechanical scanning

• dose uniformity critically dependent on scan uniformity
– “dose” monitored by measuring current flowing through wafer

from: Sze, VLSI 
Technology, 2nd 
edition, p. 348.
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Energy loss and ion stopping

• Note that actual stopping is statistical in nature
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– where
• dE/dx is the energy loss rate
• Rp = projected range
• ∆Rp = straggle
• ∆R⊥ = lateral straggle
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Nuclear Stopping: (dE/dx)n

• “billiard ball” collisions
– can use classical mechanics to describe energy exchange between 

incident ion and target particle 
• must consider

– Coulombic interaction between + charged ion and + nuclei in target 
– charge screening of target nuclei by their electron charge clouds 
– damage due to displaced target atoms
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Electronic Stopping
• energy lost to electronic 

excitation of target atoms
– similar to stopping in a 

viscous medium, is ∝ ion 
velocity ( √E )

• total stopping power 
– very roughly CONSTANT 

vs energy if nuclear 
dominates

– ∝ √E if electronic 
stopping dominates

• to “lowest order” the range is 
approximately
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Implant profiles
• to lowest order implant profile is approximately gaussian
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– works well for moderate energies near the peak
– essentially uses only first two moments of the distribution
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Summary of Projected Ranges in Silicon
Range (µm)
energy (keV)ion

10keV 30keV 100keV 300keV
approx
range/
MeV

boron
B11 0.04 0.11 0.307 0.66 ~3.1
phos.
P31 0.015 0.04 0.135 0.406 ~1.1
arsenic
As75 0.011 0.023 0.068 0.19 ~0.58
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Pearson IV distribution

• four moments: Rp, ∆Rp, and
– skewness of profile γ1

• γ1 < 0 implant 
“heavy” to surface 
side of peak

– light species
• γ1 > 0 implant 

“heavy” to deep side 
of peak

– heavy species
– kurtosis  β

• large kurtosis 
flatter “top”

adapted from: Sze, VLSI Technology, 2nd edition, p. 335.
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Ion stopping in other materials

• for masking want “all” the ions to stop in the mask
– oxide and photoresist

thickness for 99.99%
blocking

energy: 50keV 100keV 500keV

ion / material 
B11 / photoresist 0.4µm 0.6µm 1.8µm
B11 / oxide 0.35µm 0.6µm

P31 / photoresist 0.2µm 0.35µm 1.5µm
P31 / oxide 0.13µm 0.22µm

– densities of oxide and resist are similar, so are stopping powers
– do have to be careful about (unintentional) heating of mask material during 

implant
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Ion channeling

• if ions align with a “channel” in a 
crystal the number of collisions 
drops dramatically

adapted from: Ghandhi, 1st edition, p. 237.
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• many implants are done at an 
angle (~7˚)

– shadowing at mask edges
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Disorder production during 
implantation

• first 10-13 sec:
– ion comes to rest

• next 10-12 sec:
– thermal equilibrium established

• next 10-9 sec:
– non - stable crystal disorder relaxes via local diffusion

• very roughly,  103 - 104 lattice atoms displaced for each
implanted ion.
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Damage during ion implant

• light atom damage (B11)
– initially mostly electronic stopping, followed by nuclear 

stopping, at low energies 
• generates buried damage peak

• heavy atoms (P31 or As75)
– initially large amounts of nuclear stopping

• generates broad peak with large surface damage
• typically damage peaks at about 0.75 Rp

adapted from: Sze, 2nd edition, p. 341.
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Amorphization during implant

adapted from: Sze, 2nd edition, p. 343.

Temperature 1000/T (K-1) 

C
rit

ic
al

 D
os

e 
( c

m
-2

 ) 

2 8 10 6 4 
1013 

1014 

1015 

1016 

1017 

1018 

Temperature (ûC) 

600 100 -50 0 -100 -150 
300 

B11 

P31 

Sb122 

• damage can be so large that crystal 
order is completely destroyed in 
implanted layer

– temperature, mass, & dose 
dependent

• boron, ~30˚C: Qo ~ 1017 cm-2

• phosphorus, ~30˚C: Qo ~ 1015 cm-2

• antimony, ~30˚C: Qo ~ 1014 cm-2
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Implant activation: light atoms

• as-implanted samples have carrier concentration << implanted 
impurity concentration

• electrical activation requires annealing
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Annealing and defects: boron
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• initial effect: impurities 
onto substitutional sites

• mid-range temp, high 
dose: point defects 
“collect” into line defects

– fairly stable, efficient 
carrier traps

• high temp, high dose: line 
defects annealing out

– quite stable
– need ~900-1000° C to 

remove completely

adapted from: Sze, 2nd edition, p. 358.



Dean P. Neikirk  © 1999, last update October 28, 2002 16 Dept. of ECE, Univ. of Texas at Austin

Implant activation: heavy atoms
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dependence of 
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– amorphous for 
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adapted from: Sze, 2nd edition, p. 359.
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Diffusion of ion implants
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Diffusion of ion implants

• how big are the Dt products?
– temps:                       600˚ C     1000˚ C
– D’s:                 9x10-18 cm2/sec 2.5x10-11cm2/sec
– t’s :                           ~ 1000 sec (~17 min)
– Diffusion lengths       ~ 0.3 Å   ~ 500Å

• Rapid thermal annealing
– to reduce diffusion, must reduce Dt products

• critical parameter in anneal is temperature, not time
• rapid heating requires high power density, “low” thermal mass
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Ion implant systems

• sources
– usually gas source: BF3, BCl3, PH3, AsH3, SiCl4

• to keep boron shallow ionize BF3 without disassociation of 
molecule

– ionization sources
• arc discharge
• oven, hot filament

• machine classifications
– medium current machines (threshold adjusts, Qo < 1014 cm-2)

• ~2 mA,  ~200 kV
• electrically scanned, ± 2˚ incident angle variation
• ~10 sec to implant, few sec wafer handling time

– high current machines (source/drains, Qo > 1014 cm-2)
• > 5 mA
• mechanically scanned
• can produce 1015 dose over 150mm wafer in ~6 sec to implant
• wafer heating potential problem
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Ion Implanter

• high current 
implanter example: 
Varian SHC-80

images from http://www.varian.com/seb/shc80/shc80-1.html
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Applications of Ion Implantation

• high precision, high resistance resistor fabrication
– diffusion    ≤ 180 Ω /square ± 10%
– implantation ≤ 4 kΩ / square ± 1%

• MOS applications
– p-well formation in CMOS: precise,low dose control  ~ 1- 5 x 

1012 cm- 2

– threshold voltage adjustment:
• not possible to control threshold voltage with sufficient accuracy 

via oxidation process control 
• critical  post-gate growth adjustment possible by controlled dose 

implant:
• ∆Vt ~ q•dose / (oxide capacitance per unit area)

– “self-aligned” MOSFET fabrication
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Tailored MOSFET source/drain doping

• alignment between 
source/drain doping and gate 
is criticalfield ox

gate ox
source contact drain contact

poly

PR

PR

high dose implant

deposit and pattern poly

poly

PR
deposit and pattern poly

no overlap: can’t “complete” channel too much overlap, too much 
gate/source, gate/drain 
capacitance

• what about using the gate itself as mask?
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Tailored MOSFET source/drain doping

PR

field ox gate ox

source contact drain contact

high dose implant
• alignment between 

source/drain doping 
and gate is critical
– if no overlap, can’t 

“complete” channel
– if too much overlap, 

have too much 
gate/source, gate/drain 
capacitance

poly

PR

poly deposit, pattern

• use gate itself as mask!
• lightly-doped drain 

(LDD) device

final source-drain implant

gate

light dose implant
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Self-aligned LDD process

poly
oxide

lighlty doped source-drain

light dose implant
• “fully” self-aligned

– “side-wall spacers” 
can be formed many 
ways

• actual oxidation of 
poly gate

• cvd  deposition / 
etch back

deposit oxide

poly
oxide

CVD oxide

etch back

source-drain contacts

side-wall
spacers

high dose implant
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Silicon “on insulator”: Separation by 
IMplanted OXygen (SIMOX)

http://www.egg.or.jp/MSIL/english/semicon/simox-e.html

• high dose / energy 
oxygen implant

– dose ~ mid 1017

to 1018 cm-2

– energy ~ several 
hundred keV

– after anneal 
forms buried 
layer of SiO2
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Layer characterization

• need to characterize the layers produced thus far
– oxides

• thickness
• dielectric constant / index of refraction

– doped layers
• junction depth
• dopant concentrations
• electrical resistance / carrier concentration
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