Ion Implantation

- alternative to diffusion for the introduction of dopants
- essentially a "physical" process, rather than "chemical"
- advantages:

U

- mass separation allows wide varies of dopants
- dose control:
 - diffusion 5 10%
 - implantation:
 - 10^{11} 10 17 ions / cm² ± 1 %
 - $-10^{14} 10^{21}$ ions / cm³
- low temperature
- tailored doping profiles

Ion Implantation

high voltage particle accelerator

آ آ

- electrostatic and mechanical scanning
 - dose uniformity critically dependent on scan uniformity
- "dose" monitored by measuring current flowing through wafer

Energy loss and ion stopping

• Note that actual stopping is statistical in nature

- where
 - dE/dx is the energy loss rate
 - R_p = projected range
 - $\Delta R_p = straggle$
 - ΔR_{\perp} = lateral straggle

Nuclear Stopping: (dE/dx)_n

- "billiard ball" collisions
 - can use classical mechanics to describe energy exchange between incident ion and target particle
- must consider
 - Coulombic interaction between + charged ion and + nuclei in target
 - charge screening of target nuclei by their electron charge clouds
 - damage due to displaced target atoms

Electronic Stopping

- energy lost to electronic excitation of target atoms
 - similar to stopping in a viscous medium, is ∞ ion velocity ($\sqrt{\rm E}$)
- total stopping power

合

- very roughly CONSTANT vs energy if nuclear dominates
- ∞ √E if electronic stopping dominates
- to "lowest order" the range is approximately

$$R = \int_{0}^{E} \frac{dE}{|dE/dx|} \approx \begin{cases} nuclear : \int_{0}^{E} \frac{dE}{constant} & \propto energy \\ electronic : \int_{0}^{E} \frac{dE}{\sqrt{E}} & \propto \sqrt{energy} \end{cases}$$

Implant profiles

• to lowest order implant profile is approximately gaussian

$$N(x) = \frac{Q_0}{\sqrt{2\pi} \Delta R_p} \exp\left[-\frac{1}{2}\left[\frac{x - R_p}{\Delta R_p}\right]^2\right] \qquad R = \int_0^E \frac{dE}{|dE/dx|} \approx \begin{cases} nuclear : \int_0^E \frac{dE}{constant} & \propto energy \\ electronic : \int_0^E \frac{dE}{\sqrt{E}} & \propto \sqrt{energy} \end{cases}$$
$$\Delta R_p \approx \frac{2}{3} \cdot R_p \cdot \left[\frac{\sqrt{M_{ion} \cdot M_{target}}}{M_{ion} + M_{target}}\right], Min amu$$

- works well for moderate energies near the peak
- essentially uses only first two moments of the distribution

$$m_{0} = \frac{1}{Q_{0}} \int_{-\infty}^{\infty} N(x) dx = 1$$

$$m_{1} = \frac{1}{Q_{0}} \int_{-\infty}^{\infty} (x - R_{p})^{i} \cdot N(x) dx \qquad m_{1} = \frac{1}{Q_{0}} \int_{-\infty}^{\infty} (x - R_{p})^{i} \cdot N(x) dx = R_{p}$$

$$m_{2} = \frac{1}{Q_{0}} \int_{-\infty}^{\infty} (x - R_{p})^{2} \cdot N(x) dx = (\Delta R_{p})^{2}$$

Summary of Projected Ranges in Silicon

ion	Range (μm) energy (keV)				approx
	boron B ¹¹	0.04	0.11	0.307	0.66
phos. P ³¹	0.015	0.04	0.135	0.406	~1.1
arsenic As ⁷⁵	0.011	0.023	0.068	0.19	~0.58

Dean P. Neikirk © 1999, last update October 28, 2002

Pearson IV distribution

- four moments: R_p , ΔR_p , and
 - skewness of profile γ_1
 - γ₁ < 0 implant
 "heavy" to surface
 side of peak
 - light species
 - γ₁ > 0 implant
 "heavy" to deep side of peak
 - heavy species
 - <mark>kurtosis</mark> β
 - large kurtosis ⇒ flatter "top"

adapted from: Sze, VLSI Technology, 2nd edition, p. 335.

Ion stopping in other materials

- for masking want "all" the ions to stop in the mask
 - oxide and photoresist

	thickness for 99.99% blocking					
	energy:	50keV	100keV	500keV		
ion / material						
B ¹¹ / photoresist		0.4 μm	0.6 μm	1.8 μm		
B ¹¹ / oxide		0.35μm	0.6µm	·		
P ³¹ / photoresist		0.2μm	0.35μm	1.5µm		
P ³¹ / oxide		0.13um	0.22um	•		

- densities of oxide and resist are similar, so are stopping powers
- do have to be careful about (unintentional) heating of mask material during implant

Ion channeling

 if ions align with a "channel" in a crystal the number of collisions drops dramatically

- significant increase in penetration distance for channeled ions
- very sensitive to direction
- many implants are done at an angle (~7°)
 - shadowing at mask edges

Disorder production during implantation

- first 10⁻¹³ sec:
 - ion comes to rest
- next 10⁻¹² sec:
 - thermal equilibrium established
- next 10⁻⁹ sec:
 - non stable crystal disorder relaxes via local diffusion
- very roughly, 10³ 10⁴ lattice atoms displaced for <u>each</u> implanted ion.

Damage during ion implant

- light atom damage (B¹¹)
 - initially mostly electronic stopping, followed by nuclear stopping, at low energies
 - generates buried damage peak
- heavy atoms (P³¹ or As⁷⁵)
 - initially large amounts of nuclear stopping
 - generates broad peak with large surface damage
- typically damage peaks at about 0.75 R_p

adapted from: Sze, 2nd edition, p. 341.

Dean P. Neikirk © 1999, last update October 28, 2002

Amorphization during implant

- damage can be so large that crystal order is completely destroyed in implanted layer
 - temperature, mass, & dose dependent
 - boron, ~30°C: Q_o ~ 10¹⁷ cm⁻²
 - phosphorus, ~30°C: Q_o ~ 10¹⁵ cm⁻²
 - antimony, ~30°C: Q_o ~ 10¹⁴ cm⁻²

adapted from: Sze, 2nd edition, p. 343.

Implant activation: light atoms

- as-implanted samples have carrier concentration << implanted impurity concentration
- electrical activation requires <u>annealing</u>

adapted from: Sze, 2nd edition, p. 357.

Annealing and defects: boron

- initial effect: impurities onto substitutional sites
- mid-range temp, high dose: point defects "collect" into line defects
 - fairly stable, efficient carrier traps
- high temp, high dose: line defects annealing out
 - quite stable
 - need ~900-1000° C to remove completely

Implant activation: heavy atoms

- amorphization can strongly influence temperature dependence of activation / anneal
 - amorphous for phosphorus dose
 ~ 3x10¹⁴ cm⁻²
 - solid phase epitaxial regrowth occurs at T ~ 600°C

adapted from: Sze, 2nd edition, p. 359.

Diffusion of ion implants

- **implant profile:** $N(x) = \frac{Q_o^{implant}}{\sqrt{2\pi}\Delta R_p} \exp\left(-\frac{1}{2}\left[\frac{x-R_p}{\Delta R_p}\right]^2\right)$
- recall limited source diffusion profile

$$W(x,t) = \frac{Q_o^{(halfgaussian)}}{\sqrt{\pi Dt}} \exp\left(-\left[\frac{x}{2\sqrt{Dt}}\right]^2\right)$$
$$= \frac{Q_o^{implant}/2}{\sqrt{\pi Dt}} \exp\left(-\left[\frac{x}{2\sqrt{Dt}}\right]^2\right)$$

- so \sqrt{Dt} is analogous to ΔR_p
- to include effects of diffusion add the two contributions:

$$N(x) = \frac{Q_o}{\sqrt{2\pi}\sqrt{(\Delta R_p)^2 + 2Dt}} \exp\left(-\frac{1}{2}\left[\frac{(x-R_p)^2}{(\Delta R_p)^2 + 2Dt}\right]\right)$$

Diffusion of ion implants

how big are the Dt products?

- temps: 600° C ⇒ 1000° C
- D's: 9x10⁻¹⁸ cm²/sec ⇒ 2.5x10⁻¹¹ cm²/sec
- t's : ~ 1000 sec (~17 min)
- Diffusion lengths ~ 0.3 Å \Rightarrow ~ 500Å
- Rapid thermal annealing
 - to reduce diffusion, must reduce Dt products
 - critical parameter in anneal is temperature, not time
 - rapid heating requires high power density, "low" thermal mass

Ion implant systems

sources

- usually gas source: BF₃, BCl₃, PH₃, AsH₃, SiCl₄
 - to keep boron shallow ionize BF₃ without disassociation of molecule
- ionization sources
 - arc discharge
 - oven, hot filament
- machine classifications
 - medium current machines (threshold adjusts, $Q_o < 10^{14}$ cm⁻²)
 - ~2 mA, ~200 kV
 - electrically scanned, ± 2° incident angle variation
 - ~10 sec to implant, few sec wafer handling time
 - high current machines (source/drains, $Q_o > 10^{14}$ cm⁻²)
 - > 5 mA
 - mechanically scanned
 - can produce 10¹⁵ dose over 150mm wafer in ~6 sec to implant
 - wafer heating potential problem

Ion Implanter

 high current implanter example: Varian SHC-80

images from http://www.varian.com/seb/shc80/shc80-1.html

Applications of Ion Implantation

- high precision, high resistance resistor fabrication
 - diffusion $\leq 180 \Omega$ /square ± 10%
 - − implantation \leq 4 kΩ / square ± 1%
- MOS applications

<mark>ປ</mark>ິ

- p-well formation in CMOS: precise, low dose control ~ 1- 5 x 10¹² cm^{- 2}
- threshold voltage adjustment:
 - not possible to control threshold voltage with sufficient accuracy via oxidation process control
 - critical post-gate growth adjustment possible by controlled dose implant:
 - $\Delta V_t \sim q$ •dose / (oxide capacitance per unit area)
- "self-aligned" MOSFET fabrication

what about using the gate itself as mask?

Tailored MOSFET source/drain doping

- alignment between source/drain doping and gate is critical
 - if no overlap, can't "complete" channel
 - if too much overlap, have too much gate/source, gate/drain capacitance
- use gate itself as mask!
- lightly-doped drain (LDD) device

Self-aligned LDD process

"fully" self-aligned

- "side-wall spacers" can be formed many ways
 - actual oxidation of poly gate
 - cvd deposition / etch back

Silicon "on insulator": <u>Separation by</u> <u>IMplanted OXygen (SIMOX)</u>

- high dose / energy oxygen implant
 - dose ~ mid 10¹⁷
 to 10¹⁸ cm⁻²
 - energy ~ several hundred keV
 - after anneal forms buried layer of SiO₂

http://www.egg.or.jp/MSIL/english/semicon/simox-e.html

Layer characterization

- need to characterize the layers produced thus far
 - oxides

U

- thickness
- dielectric constant / index of refraction
- doped layers
 - junction depth
 - dopant concentrations
 - electrical resistance / carrier concentration