Integrated Circuit Fabrication

Professor Dean Neikirk

Department of Electrical and Computer Engineering
The University of Texas at Austin
world wide web: http://weewave.mer.utexas.edu

Integrated circuits in modern society

World Wide Sales

- World-wide sales (all semiconductors): over $\$ 150$ billion dollars
- about 87\% ICs, 13\% discretes

Selected moments in solid-state electronics

- Early semiconductors discovered in 1800's: (PbS, ZnSb, AgS)
- 1874: Ferdinand Braun reported rectification in point contact diodes on PbS. Braun won the 1909 Nobel prize for his word on radio, along with Marconi
- 1906: Silicon used for the first time
- 1911: term "semiconductor" introduced
- 1930's: largely valid theoretical description of rectifying junctions complete
- Dec. 1947: Brattain, Bardeen, \& Shockley demonstrated point contact transistor. 1956 Nobel for this work
- Jan . 1948: Shockley has worked out operation (theoretical) of bipolar junction transistor

Selected moments in solid-state electronics

- 1951: manufacturable technique demonstrated using "grown junctions"
- 1954: photoresist technology applied to transistor fab
- 1954-58: TI monopoly on silicon transistors
- Sept. 1958: Jack Kilby (TI) patents "Solid Circuit,"monolithic Ge Phase-shift oscillator \& flip-flop

story/firsticnf.htm

http://www.tcm.org/html/history/detail/1958intcirc.html

Selected moments in solid-state electronics

- 1959: truly planar IC process by Noyce (Fairchild)

- Early 1960's: Motorola joins "Big Three" (TI, Fairchild, Motorola)
- 1960's: Bipolar versus MOSFET debate rages
- 1966: Tl's first MOS IC (binary-to decimal decoder)
- 1968ish: Intel founded by ex-Fairchild employees (Noyce \& Moore)

Selected moments in solid-state electronics

- 1971: first "microprocessor": Intel 4004, 2300 transistors, 108kHz, $13.5 \mathrm{~mm}^{2}$
- 1974: first "PC" (the Altair), Intel 8080 microprocessor, 2MHz, 20mm²

- 1978: IBM PC, Intel 8086/8088
- 1997: Intel Pentium® II, 7.5 million transistors, 200$300 \mathrm{MHz}, 209 \mathrm{~mm}^{2}$

2000: Pentium 4, 42 million transistors, 0.18 microns, 1.5 GHz, 224mm ${ }^{2}$
http://www.intel.com/intel/intelis/museum/exhibit/hist micro/hof/hof main.htm, also data from: http://www.icknowledge.com/trends/uproc.html

other history

- 1967: 2" wafers
- mid-80's: 4" wafers
- http://www.national.com/com pany/pressroom/gallery/histo rical.html

ITRS: International Technology Roadmap for Semiconductors

- http://public.itrs.net/
- assessment of the semiconductor technology requirements
- objectives is to ensure advancements in performance of ics
- cooperative effort of global industry manufacturers and suppliers, government organizations, consortia, and universities
- identifies technological challenges and needs over the next 15 years
- sponsored by the Semiconductor Industry Association (SIA), the European Electronic Component Association (EECA), the Japan Electronics \& Information Technology Industries Association (JEITA), the Korean Semiconductor Industry Association (KSIA), and Taiwan Semiconductor Industry Association (TSIA)

ITRS roadmap (2000) fabrication requirements

- dimensional requirements

"technology node" (nm)	year	min gate length (nm)	equivalent gate oxide thickness (nm)
130	2002	$85-90$	$1.5-1.9$
90	2005	65	$1.0-1.5$
60	2008	45	$0.8-1.2$
40	2011	32	$0.6-0.8$

Performance characteristics and the SIA Roadmap (1997)

- transistor count

Year of first product shipment	1997	1999	2001	2003	2006	2009	2012
Memory							
bits @ samples/intro	256M	1G	*	4G	16G	64G	256G
bits @ production	64M	256M	1G	1G	4G	16G	64G
Bits/cm ${ }^{2}$ @ sample/intro	96M	270M	380M	770M	2.2B	6.1B	17B
DRAM chip size, mm^{2}	$100 \mathrm{~mm}^{2}$	$140 \mathrm{~mm}^{2}$	$160 \mathrm{~mm}^{2}$	$200 \mathrm{~mm}^{2}$	$280 \mathrm{~mm}^{2}$	$390 \mathrm{~mm}^{2}$	$550 \mathrm{~mm}^{2}$
Logic (high volume, cost sensitive)							
Logic transistors/cm ${ }^{2}$ (packed, including onchip SRAM)	3.7 M	6.2M	10M	18M	39M	84M	180M
Microprocessor transistors/chip	11M	21M	40M	76M	200M	520M	1.4B
MPU chip size, mm^{2}	$110 \mathrm{~mm}^{2}$	$125 \mathrm{~mm}^{2}$	$140 \mathrm{~mm}^{2}$	$150 \mathrm{~mm}^{2}$	$180 \mathrm{~mm}^{2}$	$220 \mathrm{~mm}^{2}$	$260 \mathrm{~mm}^{2}$
Logic (low volume; ASICs)							
Usable transistors/ cm^{2}	8M	14M	16M	24M	40M	64M	100M

Performance characteristics and the SIA Roadmap (1997)

- performance

Year of first product shipment	1997	1999	2001	2003	2006	2009	2012
Chip frequency							
on chip. local, high perf.	750 MHz	1.25 GHz	1.5 GHz	2.1 GHz	3.5 GHz	6 GHz	10 GHz
on chip, global, high perf.	750 MHz	1.2 GHz	1.4 GHz	1.6 GHz	2 GHz	2.5 GHz	3 GHz
on chip, cost sensitive	400 MHz	600	700	800	1.1 GHz	1.4	1.8
chip to board, high perf.	750 MHz	1.2 GHz	1.4 GHz	1.6	2	2.5	3
Max number of wiring levels	6	~ 7	7	7	~ 8	$8-9$	9

Performance characteristics and the SIA Roadmap (1997)

- device dimensions

Year of first product shipment	1997	1999	2001	2003	2006	2009	2012
Technology linewidth (dense lines, DRAM half pitch)	250 nm	180 nm	150 nm	130 nm	100 nm	70 nm	50 nm
isolated lines	200 nm	140 nm	120 nm	100 nm	70 nm	50 nm	35 nm

FET dimensions

Tox (equiv. SiO_{2} thickness)	4 nm	3 nm	2 nm	2 nm	1.5 nm	$<1.5 \mathrm{~nm}$	$<1.0 \mathrm{~nm}$
Lgate							
xj	50 nm	36 nm	30 nm	26 nm	20 nm	15 nm	10 nm
Max number of wiring levels	6	~ 7	7	7	~ 8	$8-9$	9

Performance characteristics and the SIA Roadmap (1997)

- wafer, package dimensions

Year of first product shipment	1997	1999	2001	2003	2006	2009	2012
Lithography field size ($\mathrm{mm} \mathrm{x} \mathrm{mm} ; \mathrm{mm}^{2}$)	$\begin{gathered} 22 \times 22 \\ 484 \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 25 \times 32 \\ 800 \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 25 \times 34 \\ 850 \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 25 \times 36 \\ 900 \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 25 \times 40 \\ 1000 \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 25 \times 44 \\ 1100 \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 25 \times 52 \\ 1300 \mathrm{~mm}^{2} \end{gathered}$
Wafer diameter (mm)	$200 \text { mm }$ (8")	$\begin{gathered} 300 \mathrm{~mm} \\ (12 ") \\ \hline \end{gathered}$	300 mm	300 mm	300 mm	$\begin{gathered} 450 \mathrm{~mm} \\ \left(18^{\prime \prime}\right) \\ \hline \end{gathered}$	450 mm

Number of chip I/O's

chip-to-package high performance	1490	2000	2400	3000	4000	5400	7300
"low cost"	800	975	1195	1460	1970	2655	3585

Number of package
I/Os

ASIC (high perf.)	1100	1500	1800	2200	3000	4100	5500
MPU, cost sensitive	600	810	900	1100	1500	2000	2700

Silicon Semiconductor Integrated Circuits

- Silicon makes up over 26\% of the earth's crust, mainly in the form of silicon dioxide, SiO_{2}, more commonly known as sand or quartz
- For semiconductor use, the silicon must be purified so that there are no more than about ten impurity atoms to every billion silicon atoms
- Large diameter (> 8 inch), single crystal silicon boules weighing more than 100 lbs are routinely grown from a melt at over $2500^{\circ} \mathrm{F}$

What does silicon look like?

- fundamentally, it looks like diamond!
- each atom bonds to four neighbors in a tetragonal configuration
- the atoms are arranged into a facecentered cubic crystal structure

Silicon "wafers"

- To build integrated circuits we use large, very flat 'wafers'
- Silicon substrate usage
- '84: 2.5 G in ${ }^{2}$ (about 0.6 sq. miles!)
- '86: 1.35 G in²
- '87: $1.99 \mathrm{Gin}^{2}$
- '93: 2 G in ${ }^{2}$
- '94: 3 G in ${ }^{2}$
- '95: 3 G in²
- '99: 4.263 G in² @ $\$ 5.883$ billion
- Costs
- raw substrate: about $\$ 1.38$ per sq. inch (1999)
- processed: \$30-\$40 per sq. inch

Basic Electrical Terminology

- Voltage (V)
- the externally applied force which drives the flow of charged carriers
- Current (I)
- the number of carriers per second flowing in the electrical circuit
- I = constant x speed x number
- Resistance (R)
- a measure of how much force is needed to produce a certain current
- Ohm's Law: Ix R = V

Electrical Conduction in Semiconductors

- Semiconductors
- depending on what kind of impurities are incorporated, the charge carriers in semiconductors may be either electrons (called n-type material) or holes (called p-type material); compared to metals (which have only electrons), semiconductor have fairly high resistance
band diagram
- Electrons:
- negative charge, flow "downhill"
- Holes:
- positive charge, flow "uphill"

What happens when two different types of silicon touch?

- This is called an "p-n junction"

If a positive voltage is applied to the n-type side of the junction the barrier is even higher than it was with no voltage

p-n Junctions in Semiconductors

- But if a positive voltage is applied to the p-type side both the electrons and holes can flow:

p-n Junctions in Semiconductors

- Because of the way the barrier changes in a p-n junction, it changes from a low resistance device to a high resistance one, depending on the applied voltage:

This "asymmetry" in electrical characteristic is required in many integrated circuit devices.

Band diagrams for a metal - insulator semiconductor (MIS) system

- what happens when you join these three materials?
- the "field effect" was actually discovered in the early 1900's (before p-n junctions were known)
in isolation:

when in contact:

Accumulation and inversion in an MIS system: p-type substrate

- metal biased at voltage -V relative to semiconductor
- surface is in "accumulation"
- majority carrier type at surface same as in bulk

- metal biased at voltage +V relative to semiconductor
- surface is in "inverted"
- majority carrier type at surface opposite that in bulk

Metal-Oxide Field Effect Transistor (MOSFET)

- to make a device you need
- insulator and gate metal in close proximity to semiconductor surface
- all the action is at the surface!
- contact that blocks bulk majority carriers, but not opposite carrier type
- p-n junction
- four terminal device
- usual configuration connects source and substrate together

How to make a MOSFET

- What do you need?
- a good semiconductor (SILICON)
- a p-n junction (boron-doped Si - phosphorus-doped Si)
- a good insulator (SILICON DIOXIDE)
- a good conductor (poly-silicon and aluminum, copper)

CMOS inverter

- need both n - and p -channel devices on the same chip:

Silicon Device Processing

- The construction of a silicon integrated circuit uses three basic processes:
- Oxidation:
- by heating silicon to about $2000^{\circ} \mathrm{F}$ in oxygen the surface of the silicon becomes silicon dioxide (glass), a very good insulator.
- Photolithography:
- is a way of producing a pattern of bare areas and covered areas on a substrate. This serves as a mask for etching of the silicon dioxide.
- Diffusion:
- is a process for the introduction of controlled amounts of impurities into the bare areas on the silicon (as little as one impurity atom per million silicon atoms). This allows the formation of p -n diodes in the substrate.
- When all these steps are combined, along with metal wires for connections between devices, an integrated circuit can be made.

How to make a MOSFET

start: bare silicon wafer

oxidize

apply photoresist (pr)

expose mask 1

How to make a MOSFET

develop pr

etch oxide

strip pr

introduce source drain dopants

How to make a MOSFET

coat pr, align mask 2, expose mask 2

develop pr, etch oxide

strip pr, re-oxidize to form gate insulator

How to make a MOSFET

coat pr, align mask 3, expose mask 3

develop pr, etch oxide, strip pr

How to make a MOSFET

metallize,

coat pr, align mask 4, expose, develop pr, etch metal

strip pr: FINISHED!

MOSFET cross section

- modern integrated circuits contain millions of individual MOSFETS, each about $1 / 100$ of a hair in size!

Silicon wafer production

- 1999: 4.263 billion square inches, $\$ 5.883$ billion
- \$1.38 per square inch, $\$ 0.21$ per square cm
- 100mm, 150mm: 2.808 billion square inches (65.9% of total)
- 200mm: 1.441 billion square inches (33.8%)
- 300mm: 0.014 billion square inches of silicon (0.3%)
- 2000, expected: 4.692 billion square inches, $\$ 6.475$ billion
- 2001, expected: 5.204 billion square inches
- 2003, expected:
- 200mm: 2.892 billion square inches
- 300mm: 0.112 billion square inches
- from EE Times, "Advanced silicon substrates prices rise as wafer glut eases" by J.Robert Lineback Semiconductor Business News (01/12/00, 2:04 p.m. EST)

Volume Silicon processing costs

- 2001 wafer cost date
- reference: ICKnowledge, http://www.icknowledge.com/economics/wafer costs.html
- using the cheapest process flow costing model (5" wafers, 2 micron cmos, two levels) I could easily find:
- about $\$ 2$ per cm ${ }^{2}$
- almost all is overhead cost
- 300 mm wafer costs assume a $\mathbf{3 0 , 0 0 0}$ wafer per month Fab running at 90% of capacity
- reference: ICKnowledge, http://www.icknowledge.com

Wafer diam (mm)	Wafer area $\left(\mathrm{cm}^{2}\right)$	technology	processed cost per wafer range $(\$)$		processed cost per cm^{2}	
100	78.54	$2 \mu \mathrm{~m}, 8-12$ masks	130	190	1.7	2.4
125	122.72	$2 \mu \mathrm{~m}, 8-12$ masks	150	220	1.2	1.5
150	176.71	$2 \mu \mathrm{~m}-0.8 \mu \mathrm{~m}, 8-18$ masks	180	410	1.0	2.3
200	314.16	$0.8 \mu \mathrm{~m}-0.13 \mu \mathrm{~m}$, $14-26$ masks	480	2500	1.5	8.0
300	706.85	$0.13 \mu \mathrm{~m}, 22-26$ masks	3200	3600	4.5	5.1

Low volume foundry prices

- MOSIS (ref http://www.mosis.org/Orders/Prices/price-list-domestic.htm
- 1.5 micron cmos $\sim \$ 200$ per square $\mathrm{mm}, 5-20$ parts \Rightarrow cost $\sim \$ 4 \mathrm{~K}-\$ 1 \mathrm{~K}$ per cm ${ }^{2}$
- 0.18 micron $\sim \$ 1-2 \mathrm{~K}$ per square $\mathrm{mm}, 40$ parts \Rightarrow cost $>\sim \$ 2.5 \mathrm{~K}$ per cm^{2}
- MUMPS (foundry for simple mems processing)
- ref: http://www.memsrus.com/cronos/svcsmumps.html
- one die site is $1 \mathrm{~cm}^{2}$!
$-\Rightarrow$ cost $>$ \$3K per cm ${ }^{2}$!
TSMC 0.18 Micron Mixed Signal/RF Process (CM018)
Non-Epitaxial Wafer; Prices are per square millimeter per design and packaging is NOT included.
From http://www.mosis.org/Orders/Prices/price-list-domestic.htm
Minimum charge is for a $7.0 \mathrm{~mm}^{2}$ area. First lot of 40 parts of one design.

$\begin{gathered} \mathrm{SIZE} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered}$	UNIT PRICE	
	STANDARD	DISCOUNT
0-7	\$28,000	\$25,200
7-10	\$4,000 * size	\$3,600 * size
10-25	\$20,000 + (\$2,000 * size)	\$18,000 + (\$1,800 * size)
25-50	\$27,500 + (\$1,700 * size)	\$24,750 + (\$1,530 * size)
50-75	\$45,000 + (\$1,350 * size)	\$40,250 + (\$1,220 * size)
75-100	\$56,250 + (\$1,200* size)	\$50,750 + (\$1,080 * size)
100-150	\$66,250 + (\$1,100* size)	\$58,750 + (\$1,000 * size)

Volume Silicon processing costs

- 2001 processing cost date
- reference: ICKnowledge, http://www.icknowledge.com/economics/wafer costs.html
- advanced CMOS process, ~0.13 micron, 300mm wafers, ~25 mask levels:
- about $\$ 5$ per cm ${ }^{2}$
- reference: ICKnowledge, http://www.icknowledge.com
- model assumes a $\mathbf{3 0 , 0 0 0} 300 \mathrm{~mm}$ wafer per month fab running at $\mathbf{9 0 \%}$ of capacity
- that's about 21 million cm^{2} / month!
- about 40 wafer starts per hour
- 2001 world-wide wafer starts, 8 " (200 mm) equivalent: ~ 5 million wafers per month (~ 1.5 billion sq. cm per month)
- from http://www.semichips.org/downloads/SICAS Q4 01.pdf
- MOSIS (ref http://www.mosis.org/Orders/Prices/price-list-domestic.htm
- 1.5 micron cmos $\sim \$ 200$ per square $\mathrm{mm}, 5$ to 20 parts per lot \Rightarrow cost $\sim \$ 4 \mathrm{~K}-\$ 1 \mathrm{~K}$ per cm^{2}
- 0.18 micron $\sim \$ 1-2 \mathrm{~K}$ per square mm for 40 parts \Rightarrow cost $>\sim \$ 2.5 \mathrm{~K}$ per cm ${ }^{2}$

Zincblende crystal structure

