Microlithography

Geometry Trends Master Patterns: Mask technology Pattern Transfer: Mask Aligner technology exposing Wafer Transfer Media: Photo resist technology radiation mask blank: transparent, mechanically rigid mask masking layer: opaque, imaging system (low pass filter) patternable photoresist film to be patterned substrate (with topography!) **NEGATIVE** made insoluble POSITIVE _____ made soluble develop etch Dept. of ECE. Univ. of Texas at Austin

Minimum feature sizes (DRAMS)

• trend lines for feature size

general characteristics

- "Advanced DUV photolithography in a pilot line environment" by C. P. Ausschnitt, A. C. Thomas, and T. J. Wiltshire, IBM Journal of Research and Development, Vol. 41, No. 1/2, 1997.
 - http://www.almaden.
 ibm.com/journal/rd/
 411/aussc1.gif

Figure 1

Actual and projected minimum ground-rule migration for development and manufacturing at ASTC during the years 1990–2000. The dashed curve shows the minimum ground rule processed in a given year. The solid curve shows the weighted average ground rule across all products and DUV exposure levels. Achieved and anticipated lithography tooling milestones (NA and wavelength) are also shown.

Overlay errors between two patterns

• goal: align two "identical" patterns one on top of the other

- what can go wrong??
- λ : pure registration error
- σ : distortion error
 - overlay error: sum of all errors
 - really a statistical quantity
- rule of thumb: total overlay error not more than 1/3 to 1/5 of minimum feature size

Image characteristics

• contrast

- intensity based: scalar quantity
 - "incoherent" imaging
- electric field based: magnitude AND phase
 - interference effects should be included in "coherent" imaging system
- spatial variations in image
 - measure of how "fast" image varies
 - line pairs per unit distance is "digital" analogy
 - test pattern made up of periodic clear/opaque bars with sharp edges
 - frequency domain analogy: spatial frequency
 - test pattern is sinusoidal variation in optical transparency

Resolution in imaging systems

- diffraction limits passband of system
 - minimum geometry $\approx k \lambda / NA$
 - k ~ 0.5 to 1, typically ~0.8
 - λ : exposure wavelength
 - NA: numerical aperature (typically NA ≤ 0.5)
 - related to quality and "size" (entrance/exit pupil) of imaging system

main difficulties

- need high NA, low aberrations, short wavelength but:
 - depth of focus ~ λ / 2(NA)²
- restricted set of transparent materials for $\lambda \leq 350$ nm
- very difficult to get large field size <u>and</u> high NA

Basic imaging techniques

Resolution of Imaging Systems: Spatial Low Pass Filters

- contact
 - "shadow" formation,
 "no" diffraction
- proximity
 - some diffraction,
 "sharp" filter cut-off,
 flat response in
 passband

$$l_{\min} \approx \frac{3}{2}\sqrt{gap\cdot\lambda}$$

 imaging: low pass filter, "smooth" decrease in passband \mathbf{f}_{i_0}

illumination, intensity I_{α} , wavelength λ

Exposure radiation / wavelength choices

- want short wavelength to get small l_{min}
- electromagnetic radiation
 - "optical"
 - near UV: high pressure mercury arc lamp
 - g-line: 436 nm
 - i-line: 365 nm
 - mid UV: xenon arc lamps
 - 290-350 nm
 - deep UV: excimer laser
 - 200-290 nm
 - XeCI: 308 nm
 - KrF: 248 nm
 - F₂: 157 nm
 - x-ray: synchrotron, plasma
 - 0.4- 5 nm
- particles: very short de Broglie wavelength ($\lambda = h/mv$)
 - − electron beam (~50eV electron ⇒ λ ≈ 1.5A)
 - ion beam

Basic Mask Structure

Blanks: problem areas

- surface flatness
 - gravitational sag
 - hold mask vertically rather than horizontally
- optical transparency
 - for wavelengths < ~350nm: quartz
 - for wavelengths < ~200nm can have significant absorption
- thermal expansion
 - for 100 mm separation, 1°C Δ T
 - soda-lime: 0.9 µm
 - fused silica (quartz): 0.05 μm
 - silicon: 0.2 µm
 - traceable temperature control is essential

Mask pattern generation

- e-beam pattern generator
 - can expose very small features
 - slow, sequential exposure of pattern
 - ok for mask generation
- absorbing layer : problem areas
 - thin compared to feature width for ease of etching
 - more difficult as dimensions shrink,
 - x-ray exposure requires ~micron thick metal layer: hard to make small!
 - defect density
 - yield formula

$$Y_{single \ level} = \frac{1}{1 + D_o A} \qquad Y_{N \ levels} = \left(\frac{1}{1 + D_o A}\right)^N$$

- D_o: # of fatal defects/unit area

A: die area

- mask must be "perfect" so "repair" is essential
 - laser etch / deposition

 use coherent behavior and interference effects to improve image quality

Comparison of phase shift mask / no shift mask

from: M. Levenson, Wavefront Engineering for Photolithography, Physics Today, July 1993, p. 32.

Dean P. Neikirk

Mask Aligner Technology

- Requirements:
 - faithfully reproduce master mask pattern on wafer (low distortion errors, high resolution)
 - allow accurate alignment between pattern on wafer and mask (low registration errors)
 - overlay error $\leq 1/3 1/5$ resolution.
 - throughput!!!

Scanning projection aligners

- reflective optics
 - wavelength independent ray paths
 - no chromatic aberration
 - difficult to produce object-to-image size change
 - 1:1 mask / wafer pattern
 - low image distortion over only a limited area
 - requires scanning to cover full mask / wafer

Dean P. Neikirk

Scanner performance

- Performance Specifications for SVG Micralign
 - Resolution
 - 1.25µm lines and spaces, UV-4 (340-440nm)
 - 1.0µm lines and spaces, UV-3 (300-350nm)
 - Machine to Machine overlay
 - ±0.25µm, 125/100mm systems, 98% of data
 - +0.30µm, 150mm systems, 98% of data
 - Throughput
 - 120 wafers per hour, 125/100mm systems
 - 100 wafers per hour, 150mm systems
 - Depth of Focus: ± 6 µm for 1.5 µm lines and spaces
 - Numerical Aperture: 0.167
 - Spectral Range 240nm Through Visible
 - Exposure -10 selectable bands within the range 240-440nm
 - Wafer / Substrate Sizes: 100mm, 125mm, 150mm

Step and repeat (stepper) lithography systems

- "conventional" refractive optics
 - can produce image smaller than object
 - cannot make lens with sufficient resolution to project image over whole wafer
 - "pixel" count: field size / $(l_{min})^2$
 - $-1 \text{ cm}^2 / (0.5 \ \mu\text{m})^2 = 4 \ \text{x} \ 10^8$
 - requires mechanical translation (step) of wafer under lens

Stepper performance

• ASM I-line stepper

Lens		Field Size	Overlay	Throughput
NA	Reso- lution	Dia- meter	2pt. Global Alignment	200mm Wafers 70 Exp., 200mJ/cm ²
0.54	0.45 μm	25.5 mm	<u><</u> 70 nm	<u>></u> 48 wph

Nikon Step-and-Repeat Systems NSR-2205EX14C and NSR-2205i14E

	NSR-2005EX14C	NSR-2205i14E		
Resolution	0.25 micron	0.35 micron		
Light source	KrF excimer laser (248nm)	I -line (365 nm)		
Reduction ratio	1:5			
Exposure area	22 x 22 mm			
Alignment accuracy	50 nm			
Throughput (8 in. (200mm) wafer)	85 wafers/hr.	87 wafers/hr.		

http://www.nikon.co.jp/main/eng/ news/dec14e_97.htm

Lens performance

 recall that for diffraction limited imaging

 $l_{\min} \propto \frac{\lambda}{NA}$

- from "High-numerical-aperture optical designs," R. N. Singh, A. E. Rosenbluth, G. L.-T. Chiu, and J. S. Wilczynski, IBM Journal of Research and Development, Vol. 41, No. 1/2, 1997.
 - http://www.almaden.ibm.com/jou rnal/rd/411/singh.html

Figure 5

A summary of IBM high-NA lens designs.

Example high NA lens

 from "High-numericalaperture optical designs" by R. N. Singh, A. E. Rosenbluth, G. L.-T. Chiu, and J. S. Wilczynski, IBM Journal of Research and Development, Vol. 41, No. 1/2, 1997.

Figure 4

Configuration of the 4× non-beam-splitter lens.

22

Step and scan

- for smaller features it is hard to maintain low abberation (distortion of image) over full field of view
- scan within each step
- combination of reflective and refractive optics
 - can use short wavelength
 - can produce size reduction from mask to feature

from: Silicon Valley Group, http://svg.com/html/prod.html

Dean P. Neikirk

Scanning steppers

• ASM Step & Scan system

Lens		Field Size	Overlay	Throughput		
NA	Resolu- tion	X & Y	2pt. Global Alignment	200mm Wafers 46 Exp.,		
0.45 to 0.63	150 – 26 X 33 <u><</u> 40 nm 130 nm mm		<u>≺</u> 40 nm	10 mJ/cm ²		
				60 wph		

- SVG MSIII+ Performance Specifications
 - Resolution: 180nm for Grouped Lines
 - Image Reduction: 4x
 - Numerical Aperture: 0.6 to 0.4
 - − Alignment / Overlay: mean + $3\sigma \le 55$ nm
 - Wafer Size: 200mm (150mm Capable)
 - Throughput: 390 wph (200mm wafers), 26 fields (26mm x 34mm) @ ≤40 mj/cm²
 - Excimer Laser (λ = 248nm; BW \leq 0.3 nm)
 - Maximum Field Size: 26mm x 34mm
 - Reticle Size: 6" x 6" x 0.25" thick

200nm

Aligner spec summary

• from "High-numerical-aperture optical designs" by R. N. Singh, A. E. Rosenbluth, G. L.-T. Chiu, and J. S. Wilczynski, IBM Journal of Research and Development, Vol. 41, No. 1/2, 1997.

Manufactu rer	Model number	Reduction	NA	<i>Wafer</i> (in.)	Reso- lution (µm)	Field size (mm)	<i>DOF</i> (µm)	
I-line (365 nm)								
NIKON	NSR2205i11 D		0.5-0.63	8	0.4	31 diag**	0.92	
CANON	FPA3000i4	5X	0.6	8	0.43	31 diag	1.01	
ASM	PAS5500/100 D	5X	0.48-0.62	8	0.41	29.7 diag	0.95	
248 nm								
NIKON	NSRS201A	4X	0.6	8	0.29	25 × 33	0.69	
CANON	FPA3000EX3	5X	0.6	10	0.35	31 diag	0.69	
CANON	FPA3000EXL S	4X	0.6			25 x 32.5	0.69	
ASM	PAS5500/step	4X	0.63	8	0.25	31 diag	0.62	
ASM	PAS5500/scan	4X	0.63	8	0.25	26 x 34	0.62	
SVGL	MS III	4X	0.6	8	0.35	26 x 32.5	0.69	
ULTRATE CH	Half Dyson	1X	0.7	12	0.25	20 x 40	0.5	
193 nm								
SVGL	Prototype to LL^	4X	0.5	8	0.6/0.23	22 x 32.5	0.77	

Photoresists

- negative: exposed regions REMAIN after development
 - one component: PMMA, COP (e-beam resist)
 - two component: Kodak KTFR
 - dominant PR until early 1980's
- positive: exposed regions REMOVED after development
 - one component: acrylates
 - two components: diazoquinone / novolac resin
 - higher resolution, but "slower"
 - largely supplanted negative resists in 80's

Two component negative resists

- solvent-based developer (xylene)
 - based on differential dissolution rate of "low" and "high" molecular weight polymers
 - problem for small features: swelling of exposed resist in solvent

Two component DZN positive resist

Positive resist characteristics

- base resin + PAC (20 30% by volume)
 - chemical reaction liberates N₂
 - at high UV intensities N₂ evolution rate can be "explosive"
 - reaction rates sensitive to residual solvent and water content
 - control of pre-bake time & temperature, relative humidity critical
- etch rates in developer:
 - unexposed : base resin : exposed
 - 0.1 nm/sec : 15 nm/sec : 150 nm/sec
- thickness (typical at 5 krpm)
 - **1350 B 0.5** μm
 - 1350 J 1.5 μm
 - thickness depends on
 - $-\sqrt{(spin speed)}$
 - viscosity
- PR is <u>conformal</u> to <u>substrate</u>
- solvents
 - acetone
 - slightly soluble in alcohols

Exposure properties

- full exposure is set by energy threshold
 - time intensity = energy
 - ~linearly increases with resist thickness
 - ~ 20 mJ / µm of thickness

exposed ~

unexposed

- unexposed resist is "opaque" to the exposing UV radiation
 - resist bleaches as it exposes

can NOT easily compensate for underexposure by overdevelopment

Potential exposure problems

- "substrate" induced reflections
 - multiple reflections induce standing wave pattern
 - destructive interference: underexposed
 - primarily an issue near an edge
 - for metals, BCs require "zero" tangential E field at interface!
 - can cause underexposure
 over metals
 - contact windows may shrink

from: Thompson, Willson, & Bowden, Introduction to Microlithography,ACS Symposium Series 219, 1983, p. 45.

Interference effects

step edges also produce non-uniform resist thickness and exposure

from: Thompson, Willson, & Bowden, Introduction to Microlithography,ACS Symposium Series 219, 1983, p. 293.

Interference effects

- fixes
 - post exposure bake
 - try to diffuse exposed PAC
 - AR coating
 - place highly absorbing layer under PR
 - must then be able to pattern AR layer
 - planarize!
- multi-layer resist schemes
 - portable conformal mask (PCM)
 - thin "normal" PR on top of thicker, planarizing deep UV PR
 - expose/develop thin layer normally
 - use as "contact" mask for DUV exposure of underlying layer
 - contrast enhancement materials (CEM)
 - photo-bleachable material with VERY sharp threshold placed above PR
 - sharpens edges

Other approaches to high resolution lithography

- e beam systems ("direct write"):
 - high resolution (< 0.2 μm)
 - no mask requirement
 - low throughput
- e beam proximity printers:
 - requires mask but has high throughput potential
- X ray systems (proximity type contact printers):
 - very high resolution; probably overlay limited
 - not clear if sub 0.2-ish micron possible
 - mask technology very complex
 - low through put until brighter sources are found

Electron beam exposure systems

- dominant mask making tool.
- potential < 0.1 μ m resolution (on flat, uniform substrates).
- usually step and repeat format, e beam computer driven
- typical resist:
 - poly (methyl methacrylate)
- low throughput
- problem in electron beam systems:
 - most electrons do Not stop in the photoresist:
 - potential damage problem
 - back scattered electrons cause pattern edges to blur
 - most e- beam pattern generators contain computer code to reduce dose near edges to control proximity effects.