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Microlithography

• Geometry Trends
• Master Patterns: Mask technology
• Pattern Transfer: Mask Aligner technology
• Wafer Transfer Media: Photo resist technology

imaging system (low pass filter)

mask

exposing
radiation

made insoluble made soluble

film to be patterned
substrate (with topography!)

mask blank: transparent, 
mechanically rigid

masking layer: 
opaque, 
patternable

develop

etch

NEGATIVE POSITIVE

photoresist
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Minimum feature sizes (DRAMS)

• trend lines for feature size
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general 
characteristics

• “Advanced DUV 
photolithography in a 
pilot line environment” 
by C. P. Ausschnitt, A. C. 
Thomas, and T. J. 
Wiltshire, IBM Journal of 
Research and 
Development, Vol. 41, 
No. 1/2, 1997.

– http://www.almaden.
ibm.com/journal/rd/
411/aussc1.gif
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Overlay errors between two patterns

• goal:  align two “identical” patterns one on top of the other

σ λ

level 1
level 2

• λ : pure registration error

• σ : distortion error
– overlay error:  sum of all errors

• really a statistical quantity

• rule of thumb:  total overlay error not more than 1/3 to 1/5 
of minimum feature size

• what can go wrong??
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Image characteristics

• contrast
– intensity based: scalar quantity

• “incoherent” imaging

– electric field based: magnitude AND phase
• interference effects should be included in “coherent” imaging 

system

• spatial variations in image
– measure of how “fast” image varies

• line pairs per unit distance is “digital” analogy
– test pattern made up of periodic clear/opaque bars with sharp 

edges
• frequency domain analogy: spatial frequency

– test pattern is sinusoidal variation in optical transparency
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Modulation transfer function (MTF)
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Resolution in imaging systems

• diffraction limits passband of system
– minimum geometry ≈ k λ / NA 

• k ~ 0.5 to 1, typically ~0.8
• λ : exposure wavelength    
• NA: numerical aperature (typically NA ������

– related to quality and “size” (entrance/exit pupil) of imaging 
system

• main difficulties
– need high NA, low aberrations, short wavelength but:

• depth of focus ~ λ / 2(NA)2

– restricted set of transparent materials for λ �����QP
– very difficult to get large field size and high NA
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Basic imaging techniques

• contact

gap

mask

photoresist

optical imaging system

• proximity

• imaging
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Resolution of Imaging Systems:  
Spatial Low Pass Filters

• contact
– “shadow” formation, 

“no” diffraction

contact

projection

illumination, intensity Io, wavelength λ

position

in
te

n
si

ty

Io

proximity

lmin ≈ √(g • λ)

λ⋅≈ gapl
2

3
min

• proximity 
– some diffraction, 

“sharp” filter cut-off, 
flat response in 
passband

• imaging:  low pass 
filter, “smooth” 
decrease in passband
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Exposure radiation / wavelength 
choices

• want short wavelength to get small Omin

• electromagnetic radiation
– “optical” 

• near UV: high pressure mercury arc lamp
– g-line: 436 nm 
– i-line: 365 nm

• mid UV: xenon arc lamps
– 290-350 nm

• deep UV: excimer laser
– 200-290 nm

• XeCl: 308 nm
• KrF: 248 nm
• F2: 157 nm

– x-ray: synchrotron, plasma
• 0.4- 5 nm

• particles: very short de Broglie wavelength (λ = h/mv)
– electron beam (~50eV electron « λ ≈ 1.5A)
– ion beam
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Basic Mask Structure

• Absorbing Layer
– optical, UV wavelengths

• photographic emulsion
• thin metal films

– chrome, white and black, iron oxide, silicon
– x-ray wavelengths

• “thick,” high Z metals: gold

• Blanks
– optical, UV wavelengths: glass

• soda-lime, borosilicate, quartz
– x-ray: thin dielectric 

• boron nitride

masking layer: 
opaque, patternable

exposing radiation, wavelength λ
mask blank: transparent, 
mechanically rigid
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Blanks: problem areas

• surface flatness
– gravitational sag

• hold mask vertically rather than horizontally

• optical transparency
– for wavelengths < ~350nm: quartz

• for wavelengths < ~200nm can have significant absorption

• thermal expansion
– for 100 mm separation, 1Û&�∆T

• soda-lime: 0.9 µm
• fused silica (quartz): 0.05 µm
• silicon: 0.2 µm

– traceable temperature control is essential
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Mask pattern generation

• e-beam pattern generator
– can expose very small features

• slow, sequential exposure of pattern
• ok for mask generation

• absorbing layer : problem areas
– thin compared to feature width for ease of etching

• more difficult as dimensions shrink, 
• x-ray exposure requires ~micron thick metal layer: hard to make 

small!
– defect density

• yield formula

AD
Y

o
levelsingle +

=
1

1 N
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Y

o
levelsN 





+

=
1

1

– Do: # of fatal defects/unit area
– A: die area

• mask must be “perfect” so “repair” is essential
– laser etch / deposition
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• use coherent behavior and interference effects to improve 
image quality
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Comparison of phase shift mask / no 
shift mask

0.5 µm

0.4 µm

0.3 µm

from: M. Levenson, Wavefront Engineering for Photolithography, Physics Today, July 1993, p. 32.

opaque

phase 
shift layer

clear

conventional 
mask
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Mask Aligner Technology

• Requirements:
– faithfully reproduce master mask pattern on wafer (low 

distortion errors, high resolution)
– allow accurate alignment between pattern on wafer and mask 

(low registration errors)
• overlay error ������- 1/5 resolution.

– throughput!!!
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Scanning projection aligners
• reflective optics

– wavelength independent ray paths
• no chromatic aberration

– difficult to produce object-to-image size change
• 1:1 mask / wafer pattern

– low image distortion over only a limited area
• requires scanning to cover full mask / wafer

D. J. Elliott, Microlithography: Process 
Technology for IC Fabrication. New York: 

McGraw-Hill Book Company, 1986, p. 
119.

illuminating beam

trapezoidal mirror

mask/reticle

scan direction

wafer

illuminated 
image

scan direction

primary mirror 
(concave)

from: W. M. Moreau, 
Semiconductor 
Lithography, Plenum 
Press, 1988,  p. 363.

secondary 
mirror 
(convex)

mask scan wafer scan

zone of good 
correction

light source

slit
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Scanner performance

• Performance Specifications for SVG Micralign
– Resolution 

• 1.25µm lines and spaces, UV-4 (340-
440nm) 

• 1.0µm lines and spaces, UV-3 (300-
350nm) 

– Machine to Machine overlay 
• ±0.25µm, 125/100mm systems, 98% of 

data 
• +0.30µm, 150mm systems, 98% of data 

– Throughput 
• 120 wafers per hour, 125/100mm 

systems 
• 100 wafers per hour, 150mm systems 

– Depth of Focus: ± 6 µm for 1.5 µm lines and 
spaces

– Numerical Aperture:  0.167 
– Spectral Range 240nm Through Visible 
– Exposure -10 selectable bands within the 

range 240-440nm 
– Wafer / Substrate Sizes: 100mm, 125mm, 

150mm

from: Silicon Valley Group, 
http://svg.com/html/prod.html
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wafer on stepping stage

• “conventional” refractive optics

Step and repeat (stepper) lithography 
systems

m
ask/reticle

source

condensing 
optics

image 
forming 
optics

image

– can produce image smaller than object

– cannot make lens with sufficient resolution to project image over whole wafer
• “pixel” count: field size / ( Omin)2

– 1 cm2 / (0.5 µm)2 = 4 x 108

• requires mechanical translation (step) of wafer under lens
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Stepper performance

 

 NSR-2005EX14C NSR-2205i14E 
Resolution  0.25 micron  0.35 micron 
Light source KrF excimer laser 

(248nm) 
I -line (365 nm) 

Reduction ratio 1:5  
Exposure area 22 x 22 mm  
Alignment 
accuracy 

50 nm  

Throughput (8 in. 
(200mm) wafer) 

85 wafers/hr.  87 wafers/hr. 

 

from: Nikon, 
http://www.nikon.co.jp/main/eng/

news/dec14e_97.htm

ASM Lithography, 
http://www.asml.com/prodtech

/stefr.htm
Lens Field 

Size
Overlay Throughput

NA Reso-
lution

Dia-
meter

2pt. Global 
Alignment

200mm Wafers
70 Exp., 

200mJ/cm2

0.54 0.45
µm

25.5 
mm

<70 nm >48 wph

• ASM I-line stepper

• Nikon Step-and-Repeat Systems NSR-2205EX14C and NSR-2205i14E
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Lens performance

• recall that for diffraction limited 
imaging

• from “High-numerical-aperture 
optical designs,”  R. N. Singh, A. E. 
Rosenbluth, G. L.-T. Chiu, and J. S. 
Wilczynski, IBM Journal of Research 
and Development, Vol. 41, No. 1/2, 
1997.

– http://www.almaden.ibm.com/jou
rnal/rd/411/singh.html

NA
l

λ∝min
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Example high 
NA lens

• from “High-numerical-
aperture optical designs” 
by R. N. Singh, A. E. 
Rosenbluth, G. L.-T. 
Chiu, and J. S. 
Wilczynski, IBM Journal 
of Research and 
Development, Vol. 41, 
No. 1/2, 1997.
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Step and scan

• for smaller features it is hard to maintain low abberation
(distortion of image) over full field of view

• scan within each step
• combination of reflective and refractive optics

– can use short wavelength
– can produce size reduction from mask to feature

from: Nikon, 
http://www.nikon.co.jp/main/eng/news/dec202e_97.htm

from: Silicon Valley Group, 
http://svg.com/html/prod.html
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Scanning steppers

• SVG MSIII+ Performance Specifications 
– Resolution: 180nm for Grouped Lines 
– Image Reduction: 4x 
– Numerical Aperture: 0.6 to 0.4
– Alignment / Overlay: mean + 3σ ����QP
– Wafer Size: 200mm (150mm Capable) 
– Throughput: 390 wph (200mm wafers), 26 fields 

(26mm x 34mm) @ ����mj/cm2

– Excimer Laser (λ = 248nm; BW ������QP��
– Maximum Field Size: 26mm x 34mm
– Reticle Size: 6" x 6" x 0.25" thick

from: Silicon Valley Group, http://svg.com/html/prod.html

ASM Lithography, 
http://www.asml.com/prodtech/stefr.htm

Lens Field 
Size

Overlay Throughput

NA Resolu-
tion

X & Y 2pt. Global 
Alignment

200mm Wafers
46 Exp., 

10 mJ/cm20.45
to 0.63

150 –
130 nm

26 X 33 
mm

<40 nm

60 wph

• ASM Step & Scan system
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Manufactu
rer 

Model 
number Reduction NA Wafer 

(in.) 

Reso-
lution 
(µm) 

Field 
size 
(mm) 

DOF 
(µm) 

I-line (365 nm) 

NIKON NSR2205i11
D 

-- 0.5-0.63 8 0.4 31 diag** 0.92 

CANON FPA3000i4 5X 0.6 8 0.43 31 diag 1.01 

ASM PAS5500/100
D 

5X 0.48-0.62 8 0.41 29.7 diag 0.95 

248 nm 
NIKON NSRS201A 4X 0.6 8 0.29 25 × 33 0.69 
CANON FPA3000EX3 5X 0.6 10 0.35 31 diag 0.69 

CANON FPA3000EXL
S 

4X 0.6 -- -- 25 x 32.5 0.69 

ASM PAS5500/step 4X 0.63 8 0.25 31 diag 0.62 
ASM PAS5500/scan 4X 0.63 8 0.25 26 x 34 0.62 
SVGL MS III 4X 0.6 8 0.35 26 x 32.5 0.69 

ULTRATE
CH 

Half Dyson 1X 0.7 12 0.25 20 x 40 0.5 

193 nm 

SVGL Prototype to 
LL^ 

4X 0.5 8 0.6/0.23 22 x 32.5 0.77 

 

Aligner spec summary
• from “High-numerical-aperture optical designs” by R. N. Singh, A. E. Rosenbluth, G. L.-T. Chiu, and 

J. S. Wilczynski, IBM Journal of Research and Development, Vol. 41, No. 1/2, 1997.
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Photoresists

• negative: exposed regions REMAIN after development
– one component: PMMA, COP (e-beam resist)
– two component: Kodak KTFR
– dominant PR until early 1980’s

• positive: exposed regions REMOVED after development
– one component: acrylates
– two components: diazoquinone / novolac resin
– higher resolution, but “slower”

• largely supplanted negative resists in 80’s 
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Two component negative resists

• UV exposure: λ §����QP���GRVH�
§���mJoule / cm2

• photo driven cross linking
hν

X N3N3

low conc. sensitizer
low MW 
rubber 
matrix

X NN

high MW cross-linked polymer

• solvent-based developer (xylene)
– based on differential dissolution rate of “low” and “high” molecular 

weight polymers
– problem for small features: swelling of exposed resist in solvent
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Two component DZN positive resist
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substrate

resist novolac resin

photoactive compound (PAC)

diazo-
naphthoquinone
base insoluble 

inhibiter

O
N2

R

O
OH
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C
indene carboxylic 
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base soluble
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Positive resist characteristics

• base resin + PAC (20 - 30% by volume)
– chemical reaction liberates N2

• at high UV intensities N2 evolution rate can be “explosive”
– reaction rates sensitive to residual solvent and water content

• control of pre-bake time & temperature, relative humidity critical
• etch rates in developer:

• unexposed :   base resin :  exposed
0.1 nm/sec :  15 nm/sec  :  150 nm/sec

• thickness (typical at 5 krpm)  
– 1350 B          0.5 µm
– 1350 J           1.5 µm

• thickness depends on 
– ¥�VSLQ�VSHHG�
– viscosity

• PR is conformal to substrate
• solvents

– acetone
– slightly soluble in alcohols
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unexposed

Exposure properties

• full exposure is set by energy 
threshold

– time • intensity = energy
– ~linearly increases with resist 

thickness
• ~ 20 mJ / µm of thickness

• unexposed resist is “opaque” to 
the exposing UV radiation

– resist bleaches as it exposes
300 340 380 420 460 500

re
la

ti
ve

 a
b

so
rb

an
ce

Microposit 2400 series photoresist

Wavelength (nm)

from: D. Elliott, Integrated Circuit Fabrication 
Technology, McGraw-Hill, 1989, p. 275.

unexposed

exposed

first δt
+ δt

exposed

– can NOT easily compensate for underexposure by overdevelopment
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– for metals, BCs require 
“zero” tangential E field at 
interface!

• can cause underexposure 
over metals

– contact windows may 
shrink

Potential exposure problems

from: Thompson, Willson, & Bowden, 
Introduction to Microlithography,ACS 
Symposium Series 219, 1983, p. 45. 

oxide

resist

mask• “substrate” induced 
reflections
– multiple reflections 

induce standing wave 
pattern

• destructive interference: 
underexposed

• primarily an issue near an 
edge
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Interference effects

• step edges also produce non-uniform resist thickness and 
exposure

featureresist

from: Thompson, Willson, & Bowden, 
Introduction to Microlithography,ACS 
Symposium Series 219, 1983, p. 293. 

resist

oxide

silicon

nominal line

exposed

exposed

cross
section

top
view
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Interference effects

• fixes
– post exposure bake

• try to diffuse exposed PAC
– AR coating

• place highly absorbing layer under PR
• must then be able to pattern AR layer

– planarize!
• multi-layer resist schemes

– portable conformal mask (PCM)
• thin “normal” PR on top of thicker, planarizing deep UV PR

– expose/develop thin layer normally
– use as “contact” mask for DUV exposure of underlying layer

– contrast enhancement materials (CEM)
• photo-bleachable material with VERY sharp threshold placed 

above PR
• sharpens edges
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Other approaches to 
high resolution lithography

• e - beam systems (“direct - write”):
– high resolution (< 0.2 µm )
– no mask requirement
– low throughput

• e - beam proximity printers:
– requires mask but has high throughput potential

• X - ray systems (proximity - type contact printers):
– very high resolution; probably overlay limited 

• not clear if sub 0.2-ish micron possible

– mask technology very complex 
– low through put until brighter sources are found



Dean P. Neikirk 35 Dept. of ECE, Univ. of Texas at Austin

Electron beam exposure systems

• dominant mask making tool.
• potential < 0.1 µm resolution (on flat, uniform substrates).
• usually step - and - repeat format, e - beam computer driven
• typical resist:

– poly (methyl methacrylate)

• low throughput
• problem  in electron beam systems:

– most electrons do Not stop in the photoresist:
• potential damage problem
• back scattered electrons cause pattern edges to blur 

– most e- beam pattern generators contain computer code to 
reduce dose near edges to control proximity effects.


