Metallization

- materials should:
 - have low resistivity
 - form low resistance ohmic contacts
 - be stable for long term operation
- physically it must:
 - adhere well to the substrate
 - be deposited at low temperature
 - be patternable for small dimensions
- two basic categories:
 - interconnects
 - low resistance, high current
 - gate electrodes in MOSFETS
 - must be stable at high temperature for self- aligned gates

Materials for Interconnects and Contacts

- aluminum
 - most common interconnect and contact material
 - 3 μ Ω cm, 0.03 Ω / \Box @ 1 μ m
 - excellent adherence to oxides
 - good ohmic contacts to Si
- copper
 - primarily used as an interconnect material
 - 1.7 $\mu \Omega$ cm, ~0.02 Ω / \Box @ 1 μ m
- gold
 - very inert; adheres poorly
 - 2.5 $\mu \Omega$ cm, 0.025 Ω / \Box @ 1 μ m
 - used mainly for GaAs interconnects

Materials for Interconnects and Contacts

- polysilicon
 - used mainly for gate materials
 - \geq 300 μ Ω cm, \approx 3 Ω / \Box @ 1 μ m
 - high temperature stability
- refractory Metals
 - chromium, palladium, tungsten
 - very high temperature stability
 - used mainly as reaction barriers
- refractory Silicides
 - moderate resistivities
 - WSi₂ 70 $\mu\Omega$ cm
 - $Pd_2Si 30 \mu \Omega cm$
 - good high temperature stability
 - used with poly as gate metallization

D D C

Self-Aligned silicide MOSFET SALICIDE process

- oxidize sidewalls of poly
- etch contact windows, strip nitride

• deposit metal (Pt, Ti) _

✓ ✓ SALICIDE process

• heat to drive reaction, form silicide

selective etch of unreacted metal

can also use cvd deposited oxide to form sidewall spacers

Ohmic Contacts

• general requirements

- specific contact resistivity ρ_c (Ω -cm²)
- non-injecting contact
- should not damage substrate
- basic techniques
 - form n⁺ p⁺ wells in Si, then metallize
 - forms Schottky, but is dominated by tunneling currents for $N_D > 10^{19}$ cm⁻³
 - p⁺ to n⁺ junction
 - forms symmetric tunnel junction with zero breakdown voltage
 - for AI to Si can use the AI as source for p⁺ doping
 - $ρ_c \sim 10^{-6} 10^{-8} \Omega \cdot cm^2$
 - → 1µm² contact ~ 100Ω 1Ω resistance

Ohmic Contacts

- major problem
 - Kirkendall effect
 - after 450°C contact "forming" step
 - pits appear at Al/Si interface
 - after cooling silicon "boulders" are imbedded in the Al

- what causes this?
 - what about interdiffusion and solid solubility?

٠

AI - Si binary phase diagram

Atomic % silicon

- Si in Al @ 450° C : 0.5 wt.%
- Al in Si @ 450° C: 0.001 wt%
- must satisfy solid solubility requirements for two dissimilar materials in ٠ contact
 - when AI contact is formed on Si there is a net dissolution of the silicon
 - large diffusion of Si along Al grain boundaries also occurs

Kirkendall Effects on Contacts

- solutions
 - add ≈ 1 % Si to AI during deposition, along with ≈ 3 % Cu to prevent electromigration
 - use multilayer contact metallization:
 - adjacent to Si deposit
 - platinum silicide
 - 500 Å Pt + 665 Å Si consumed gives 990 Å PtSi
 - palladium silicide
 - + 500 Å Pd + 500 Å Si consumed gives 720 Å Pd $_2$ Si
 - followed by \approx 2000 Å TiW (20% Ti) for adhesion, diffusion and intermetallic barrier
 - Al or Au interconnect metal

Intermetallic compounds at metal interface

- "Purple Plague": ٠
 - traditional bonding wire between IC and its package lead frame is gold
 - if a high temperature (~400°C) step is used after bonding (e.g., to attach a • metal package lid) open circuits result

- aluminum and gold form the compounds
 - Au₂AI: tan, brittle, poor conductor
- AuAl₂: purple, good conductor
 to combine the two metallizations you could use diffusion/reaction barriers
 - deposition of Ti, Cr, Ta for adhesion
 - barrier of W or Mo
 - gold
 - barrier of Pt
 - barrier of Ti
 - aluminum

Electromigration in Interconnects

- transport of mass in metals due to momentum transfer from electrons when the conductor is subjected to very high current densities
 - typical current densities in IC's $10^5 \text{ A} / \text{ cm}^2$
 - 1 mA, 1 µm² ➡ 10⁵ A/cm²
 - one of most significant failure modes in interconnects
 - mean time to failure depends on
 - current density j, temperature, material properties

$$MTF \propto \left[j^{n} \cdot e^{-E_{a}/kT}\right]^{-1}$$

- n: between1 and 3, typically about 2
- E_a: activation energy, critically dependent on microstructure
 - grain size very important
- electromigartion tends to
 - decrease for metals with higher melting points
 - decrease for metals with higher atomic number (mass)

Electromigration in Interconnects

• in aluminum films:

- most migration along grain boundaries
- control (increase) grain size by:
 - incorporate 0.5% -4% Cu in film
 - control deposition conditions
- in VLSI, linewidths may be small enough to form single crystal segments which reduce electromigration effects
- new(er) problem:
 - stress induced voids in metal films

adapted from Sze, 1st ed., p. 372.

Copper Interconnects

- multi-level copper interconnects
 - reduce electrical resistance
 - reduces RC delay
 - smaller lines \Rightarrow higher packing density ⇒ fewer number of layers need for wiring ⇒ reduced cost
 - improve electromigration resistance
 - smaller lines ⇒ higher packing density ⇒ fewer number of layers need for wiring ⇒ reduced cost
- issues
 - deposition usually via electroplating
 - seed layer required, usually via PVD or CVD
 - diffusion of copper
 - requires barrier layers: Ti/N, Ta/N
 - dry etch of copper is challenging
 - corrosion
 - cover sidewalls with TiN, other refractory, before copper deposition

L. Geppert, "Technology 1998, Analysis and Forcast: Solid State," in IEEE Spectrum, vol. 35, 1998, pp. 23-28.

C. Wu, "Computer Chips Take a Leap Forward," in Science News, vol. 152, 1997, pp. 196.

Chemical-mechanical polish (CMP)

- in multi- level interconnect planarization is limiting problem
- CMP
 - lithography/etch to pattern metals
 - deposit dielectric
 - polish to planarize dielectric surface
 - deposit dielectric
 - etch contact openings (vias), deposit via "plug" material, etch/polish as needed
 - repeat starting with deposition/patterning of next metal lines

Damascene process

- deposit dielectric
- etch "trenches" that are where you want metal lines
- "line" trenches if necessary
- blanket deposit metal
- polish metal back to dielectric surface
- deposit dielectric
- open vias
- deposit via plug material
- repeat by depositing dielectric, etching trenches to be filled with metal
- dual damascene process: use one layer of dielectric that has pattern for vias and metal lines

Damascene/CMP example

•ref: R. W. Mann, L.
A. Clevenger, P. D.
Agnello, and F. R.
White, "Salicides and local interconnections for highperformance VLSI applications," IBM J. Res. Develop., vol. 39, pp. 403-417, 1995. Photo p. 414.

- dielectric layers have been etched away to reveal metal lines
- SRAM cell
 - green: word lines, salicided poly
 - yellow: 1st global, Ti/Al(Cu)/Ti/TiN
 - pink: local (intra-cell), tungsten
 - grey: contact studs, tungsten

Microlithography

exposing

Geometry Trends

Í n

- Master Patterns: Mask technology
- Pattern Transfer: Mask Aligner technology
- Wafer Transfer Media: Photo resist technology

Summary Slide

Metallization

<mark>ປ</mark>ິ

- Ohmic Contacts
- Electromigration in Interconnects
- Self-Aligned silicide MOSFET <u>SALICIDE process</u>
- <u>Chemical-mechanical polish (CMP)</u>
- next topic: <u>lithography</u>