Silicon Oxides: SiO₂

- Uses:
 - diffusion masks
 - surface passivation
 - gate insulator (MOSFET)
 - isolation, insulation
- Formation:
 - grown / "native"
 - thermal: "highest" quality
 - anodization
 - deposited:
 - C V D, evaporate, sputter
- vitreous silica: material is a GLASS under "normal" circumstances
 - can also find "crystal quartz" in nature
- m.p. 1732° C; glass is "unstable" below 1710° C
 - BUT devitrification rate (i.e. crystallization) below 1000° C negligible

- D bridging oxygen
- \otimes non-bridging oxygen
- silicon
 - network modifier
 - network former
- hydroxyl group

Growth of SiO₂ from Si

- in dry (<< 20 ppm H2O) oxygen
 - Si + O₂ \rightarrow SiO₂
 - once an oxide is formed, how does this chemical reaction continue?
 - does the oxygen go "in" or the silicon go "out"?
- density / formula differences
 - ρ_{SiO2} = 2.25 gm/cm³ , GMW = 60
 - ρ_{si} = 2.3 gm/cm³ , GMW = 28
 - oxide d thick consumes a layer 0.44d thick of Si original silicon

n SiO₂ 0.44d

 "bare" silicon in air is "always" covered with about 15-20 Å of oxide, upper limit of ~ 40 Å

surface

 it is possible to prepare a hydrogen terminated Si surface to retard this "native" oxide formation

"Wet" oxidation of Si

overall reaction is

<mark>ປ</mark>

- $\mathrm{Si} + 2 \mathrm{H_2O} \rightarrow \mathrm{SiO_2} + \mathrm{H_2}$
- proposed process
 - − H_2O + Si-O-Si → Si-OH + Si-OH
 - diffusion of hydroxyl complex to SiO₂ -Si interface

Si - OH
+ Si - Si - O - Si
+ Si - Si
$$\rightarrow$$

Si - O H
Si - O - Si

 this results in a more open oxide, with lower density, weaker structure, than dry oxide

- $ρ_{wet}$ ≈ 2 . 15 gm / cm³

Oxide growth kinetics

basic model is the Grove and Deal Model

supply of oxidizer is limited by diffusion through oxide to growth interface

• Fick's First Law: flux
$$j = -D \frac{\partial N_{oxidizer}}{\partial x}$$

• simplest approximation:

$$\frac{\partial N}{\partial x} = - \frac{N_0 - N_1}{x}$$

Oxidizer concentration gradient and flux

• N₀ is limited by the solid solubility limit of the oxidizer in the oxide!

• flux of oxidizer j' at SiO₂ / Si interface consumed to form new oxide

$$j' = k \cdot N_1$$

k is the chemical reaction rate constant

• in steady state, flux in must equal flux consumed

$$j' \stackrel{\text{steady state}}{=} j \implies k \cdot N_1 = -D \cdot \left(-\frac{N_0 - N_1}{x} \right) \rightarrow j = \frac{D \cdot N_0}{x + \frac{D}{k}}$$

Relation between flux and interface position

- flux: #oxidizer molecules crossing interface per unit area per unit time
 - # cm⁻² sec⁻¹
- rate of change of interface position: dx / dt (interface velocity)
 - cm sec⁻¹
- n: # of oxidizer molecules per unit volume of oxide:

$$n = \frac{\rho_{SiO_2} \cdot N_A}{GMW_{SiO_2}} \cdot \begin{bmatrix} 2 & \text{for } H_2O \\ 1 & \text{for } O_2 \end{bmatrix} = 2.25 \times 10^{22} \text{ cm}^{-3} \cdot \begin{bmatrix} 2 & \text{for } H_2O \\ 1 & \text{for } O_2 \end{bmatrix}$$

- # cm⁻³

then relation is just

$$\frac{d x}{d t} = \frac{j}{n} = \frac{D N_0/n}{x + D/k}$$

now integrate with appropriate initial condition

Grove and Deal relation

setting

- 2D/k = A
 - function of what's diffusing, what it's diffusing in, <u>and what it</u> reacts with
- $2DN_0/n = B$
 - function of what's diffusing and what it's diffusing in
- initial condition x (t = 0) = x_i
- integration gives

$$\mathbf{x}(t) = \frac{A}{2} \cdot \left[\sqrt{1 + \frac{t + \tau}{A^2/4B}} - 1 \right]$$
 LiveMath

- where τ represents an "offset" time to account for any oxide present at t = 0

$$\tau = \frac{(x_i)^2 + A \cdot x_i}{B}$$

Limiting behavior of Grove & Deal oxidation model

$$\mathbf{x}(t) = \frac{\mathbf{A}}{2} \cdot \left[\sqrt{1 + \frac{t + \tau}{\mathbf{A}^2/4\mathbf{B}}} - 1 \right]$$

"short times"

t +
$$\tau \ll A^2/4$$
 B

$$\mathbf{x}(t) = \frac{\mathbf{A}}{2} \cdot \left[\sqrt{1 + \frac{\mathbf{t} + \tau}{\mathbf{A}^2/4\mathbf{B}}} - 1 \right] \implies \mathbf{x}(t) \approx \frac{\mathbf{A}}{2} \cdot \left[\left(1 + \frac{1}{2} \cdot \frac{\mathbf{t} + \tau}{\mathbf{A}^2/4\mathbf{B}} \right) - 1 \right] = \frac{\mathbf{B}}{\mathbf{A}} \cdot \left(\mathbf{t} + \tau \right)$$

- thickness is linearly increasing with time
 - characteristic of a reaction rate limited process
- B/A is the "linear rate constant"

$$\frac{\mathbf{B}}{\mathbf{A}} = \left(\frac{2 \cdot \mathbf{D} \cdot \mathbf{N}_0}{n}\right) / \left(\frac{2 \cdot \mathbf{D}}{k}\right) = \frac{\mathbf{N}_0 \cdot \mathbf{k}}{n}$$

- linear rate constant depends on
 - reaction rate between oxidizer and silicon (k) AND
 - solid solubility of oxidizer in oxide (N₀)
 - temperature dependence mainly from reaction rate

Rate constants and Arrhenius plots

- thermally activated process
 - i.e., process must thermally overcome an energy barrier

 $y = y_{o} \cdot e^{-E_{A}/kT}$

plot log(y) vs 1/T

台

 if process has the simple thermally-activated behavior you will get a straight line!

 $\mathbf{x}(\mathbf{t}) = \frac{\mathbf{A}}{2} \cdot$

Rate constant behavior: linear rate constant

$$(t) \approx \frac{B}{A} \cdot (t+\tau)$$
 $\frac{B}{A} = \left(\frac{2DN_0}{n}\right) / \left(\frac{2D}{k}\right) = \frac{N_0 \cdot k}{n}$

- linear rate constant depends on
 - reaction rate between ٠ oxidizer and silicon (k)
 - is orientation dependent
 - temperature dependence mainly from energy required to break Si-Si bond

AND

 solid solubility of oxidizer in oxide (N_0)

Limiting behavior of Grove & Deal oxidation model

$$x(t) = \frac{A}{2} \cdot \left[\sqrt{1 + \frac{t + \tau}{A^2/4B}} - 1 \right]$$

• "long times"

+
$$\tau >> A^2/4 B$$

$$x(t) = \frac{A}{2} \cdot \left[\sqrt{1 + \frac{t + \tau}{A^2/4B}} - 1 \right] \implies x(t) \approx \frac{A}{2} \cdot \left[\sqrt{\frac{t + \tau}{A^2/4B}} \right] = \sqrt{B \cdot (t + \tau)}$$

- dependence is "parabolic": (thickness)² \propto time
 - characteristic of a diffusion limited process
- B is the "parabolic rate constant"

$$\mathbf{B} = \frac{2 \cdot \mathbf{D} \cdot \mathbf{N}_0}{\mathbf{n}}$$

- parabolic rate constant depends on
 - diffusivity of oxidizer in oxide (D) AND
 - solid solubility of oxidizer in oxide (N₀)
 - temperature dependence mainly from diffusivity

Rate constant behavior: parabolic rate constant

 $x(t) \approx \sqrt{B \cdot (t+\tau)}$

 $B = \frac{2 \cdot D \cdot N_0}{n}$

- parabolic rate constant depends on
 - diffusivity of oxidizer in oxide (D) and solid solubility of oxidizer in oxide (N₀)

 Solid solubility

 @ 1000°C

 H_2O 3 x 10¹⁹cm⁻³

 O_2 5 x 10¹⁶cm⁻³

- is NOT orientation dependent
- IS oxidizer dependent
- temperature dependence mainly from diffusivity of oxidizer in oxide

adapted from Ghandhi

Effect of Si doping on oxidation kinetics

- boron
 - k = C_{ox} / C_{Si} ~ 3
 - dopants accumulate in oxide
 - little effect on linear rate constant B/A (= N_ok / n)
 - can increase parabolic rate constant B (= 2DN_o / n)
 - really only significant for N_{boron} > ~10²⁰ cm⁻³
- phosphorus
 - $k = C_{ox} / C_{Si} \sim 0.1$
 - dopants "pile-up" at silicon surface
 - little effect on parabolic rate constant B
 - increases linear rate constant B/A
 - again, really only significant for N_{phosphorus} > ~10²⁰ cm⁻³

Pressure Effects on Oxidation

- grow thick oxides at reduced time / temperature product
 - use elevated pressures to increase concentration of oxidizer in oxide
 - for steam, both B and B/A ~ linear with pressure
 - rule of thumb: constant growth rate, if for each increase of 1 atm pressure, temperature is reduced ~ 30° C.
 - pressures up to 25 atm have been used (commercial systems: HiPOx, FOX)

Oxidation isolation

- how do you insulate (isolate) one device from another?
 - what about using an oxide?
 - try growing it first since it'll be long, high temp
 - now etch clear regions to build devices in

oxidation, etch

• it doesn't do any good!!

Masking of oxidation and isolation techniques

- would like to form thick oxide between device regions with minimum step heights
 - mask oxidation using material with low water diffusivity / solubility: Local Oxidation of Silicon (LOCOS) process
 - Si₃N₄ (silicon nitride)
 - induces high stress, must place "pad layer" below to prevent dislocations
 - for oxide pad layer, $t_{pad} \sim 0.25 t_{nitride}$
 - do have lateral diffusion at mask edge, produces "bird's beak"
 - lateral encroachment ≈ oxide thickness
 - can reduce using more complex "pads"
 - SiO₂ / poly / nitride (~15nm/50nm/150nm) helps

Use of SiO₂ as a diffusion mask

- mask against boron, phosphorus, arsenic diffusion
 - most impurities transported to slice surface as an oxide
 - P₂O₅, B₂O₃

- reacts with oxide to form mixed phosphosilcate (or borosilicate) glass
- reaction continues until full thickness of masking oxide is converted
 - doping of underlying Si commences

Other problems in oxidation: MOS threshold stability

- for an MIS structure
 - if ionized impurities are in the insulator, what happens?
 - if the ionized impurities are close to the metal, they are screened, and the silicon surface remains "unchanged"
- threshold voltage of MOS device is critically dependent on the location and amount of mobile ionic contamination in SiO₂ gate insulator
 - stability can be adversely affected

Bias-Temperature-Stress (BTS) technique

- apply field of approximately 1MV/cm between capacitor metallization and substrate
- heat sample to ~200° C to increase diffusion rate of Na⁺
- allows evaluation of contamination levels

BTS impurity drift

- apply field of approximately 1MV/cm across gate insulator
- heat sample to ~200° C to increase diffusion rate of Na⁺
- most of the impurities have drifted to near the silicon surface
 - screening now due to electrons at silicon surface
 - can cause surface inversion!!
- process is reversible!

C-V measurements

- measure C-V curves before and after BTS
 - $\mathbf{Q}_{m} \approx \mathbf{C}_{ox} \mathbf{x} \Delta \mathbf{V}_{t}$
 - $\rho \approx \mathbf{Q}_{m} / \mathbf{t}_{ox} \mathbf{A}_{cap} \mathbf{q}$
- this occurs even at room temperature!
 - threshold voltage shift ΔV_t can be MANY volts!

Other problems in oxidation: oxidation induced stacking faults

- typically ~95% of all stacking faults are OSFs
- essentially an "extra" (111) plane
 - density can vary from ~0 to 10⁷ / cm²
 - highly dependent on process (high temperature) history
 - "size" (length) at surface can be many microns
- growth is related to presence of excess "unoxidized" Si at Si-SiO₂ interface
- heterogeneous coalescence of excess Si on nucleation centers produce OSFs
 - any process that produces an excess of Si vacancies will inhibit OSF formation/growth

Chlorine Gettering in SiO₂

- effects of chlorine during oxidation
 - reduction of OSFs

U

- increased dielectric breakdown strength
- improved minority carrier lifetimes
- improved MOS threshold stability
 - when oxide is grown in presence of chlorine the Cl⁻ getters ionic contaminants such as Na+
 - Cl in gas stream reacts with Na diffusing from the furnace walls
 - Cl⁻ is incorporated into the grown oxide near the silicon interface (~20nm from Si) and can capture mobile sodium preventing threshhold instabilities
 - efficiency of chlorine gettering can be evaluated by alternately drifting the Na⁺ back and forth from metal to silicon side of the test capacitor
 - only effective for oxidation temperature above ~1100° C

Restrictions on the use of CI Gettering

- chlorine injection techniques
 - mix HCl in O₂ gas stream
 - must be VERY dry or severe corrosion problems can occur
 - produces large quantities of H_2O in furnace: $4HCI + O_2 \Rightarrow 2CI_2 + 2H_2O$
 - mix trichloroethylene (TCE) / trichloroethane (TCA) in O_2 gas stream
 - produces less water: C₂HCl₃ + 2O₂ ⇒ HCl +Cl₂ + 2CO₂
 - for TCE must have large excess of O₂ present to prevent carbon deposits
 - under low temperatures and low oxygen conditions can form phosgene COCI₂
- only effective if oxidation temperature ≥ 1100° C
 - large CI concentrations, very high temperatures, or very long oxidation times can cause rough oxides
 - very high CI can cause blisters and separation of SiO₂ from Si

Gate Oxide thickness trends

- MOS oxide thickness scales with gate length
 - circa 1998 thickness was ~ 4nm (64M and 256M DRAM technology)

Oxidation thicknesses: Grove & Deal calculations

- wet oxidation
 - 640 Torr partial pressure
 - fits very well to measurement

measurement

Problems with the simple Grove/Deal model of oxidation

- Arrhenius plots of linear and parabolic rate constants are not straight at low temperatures (T < 900° C).
- dry oxidation growth curves do not extrapolate back to zero oxide thickness at zero time

	T (°C)	Α (μm)	Β (μm²/hr)	B/A (μm/hr)	τ (hr)	x _i (nm)	(m		(100) Si		
Wet (640 Torr H₂O)	1200	0.05	0.720	14.4	0	0	l) ss			1100°	
	1100	0.11	0.51	4.64	0	0	kne		1000%		
	1000	0.226	0.287	1.27	0	0	o Thic		1000-0		
	920	0.5	0.203	0.406	0	0	ation				
Dry (760 Torr O ₂)	1200	0.04	0.045	1.12	0.027	20	Dxida				A
	1100	0.09	0.027	0.30	0.076	19	Dry O			90	0°C
	1000	0.165	0.0117	0.071	0.37	23					
	920	0.235	0.0049	0.02	1.4	26	0.0)1			++++++ 10
	700	?	?	~2.6 x10 ⁻³	81			0.1	time	(hours)	10

- must use non-physical boundary condition of either an offset time τ or $x_i \approx 200$ Å in order to fit data

Possible models to explain "rapid" initial growth

- micropores and intrinsic stress in low temperature thin oxides
 - micropores:
 - ~10 Å about 100 Å apart
 - can visualize as small irregularities that mask oxidation, adjacent regions grow up around "holes"
 - diffusion of O₂ down pores can <u>fit</u> rapid initial growth stage and curvature of Arrhenius plots

Field-Enhanced Diffusion

- experiments with external applied fields imply O₂ is charged during oxidation:
 - $O_2 \rightarrow O_2^- + h^+$
- because of mobility differences have ambipolar diffusion effects:
- range of effect is approximately the Debye length λ_D
 - $\lambda_D \propto 1/\sqrt{N}$
 - ~150-200 Å for O₂ in SiO₂
 - ~5 Å for H₂O in SiO₂

Thin oxide growth

- thin oxides can be grown controllably
 - use reduced pressure

G

- usually dry O₂ oxidation
- need "pressure" (1 atms = 3x10¹⁹) near solid solubility limit (5x10¹⁶ @ 1000°C)
 - ~ 10⁻³ atms (0.25 2 Torr used)
- use low temperature!!!
- intrinsic stress in low temperature-grown oxides:
 - low temp oxides tend to have higher density
 - <u>not</u> thermal expansion stress
 - at high temp viscosity of SiO₂ low enough to allow plastic flow
 - at low temp viscosity is too high

ITRS roadmap (2000) requirements

(http://public.itrs.net/Files/2001ITRS/Home.htm)

"technology node" (nm)	year	min gate length (nm)	equivalent gate oxide thickness (nm)		
130	2002	85-90	1.5-1.9		
90	2005	65	1.0-1.5		
60	2008	45	0.8-1.2		
40	2011	32	0.6-0.8		

 2005 projections require I_{gate} ~ 65nm, "effective oxide thickness" ~ 1-1.5nm

- "EOT":
$$EOT = t_{physical} \cdot \frac{\mathcal{E}_r}{\mathcal{E}_{rSiO_2}}$$

- problem: excessive leakage current and boron penetration for oxide thicknesses < 1.5nm
- alternative "high k" dielectrics

Diffusion Mechanisms

probability of movement

-
$$v \cong 4 v_0 e^{-E/kT}$$
, $v_0 \sim 10^{13} - 10^{14} sec^{-1}$

- interstitial diffusers
 - E_{move} ~ 0.6 1.2 eV
 - T = 300K: v ~ 1 jump per minute
 - T = 1300K: v ~ 10⁹ jumps per sec
- substitutional diffusers
 - E_{move} ~ 3 4 eV
 - T = 300K: v ~ 1 jump per 10³⁰ - 10⁴⁰ years!
 - T = 1300K: v ~ few jumps per sec

