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Silicon Oxides: SiO2

• Uses:
– diffusion masks
– surface passivation
– gate insulator (MOSFET)
– isolation, insulation

• Formation:
– grown / “native”

• thermal: “highest” quality
• anodization

– deposited:
• C V D, evaporate, sputter

• vitreous silica: material is a GLASS 
under “normal” circumstances

– can also find “crystal quartz” in nature
• m.p. 1732˚ C; glass is “unstable” below 

1710˚ C
– BUT devitrification rate (i.e. 

crystallization)  below 1000˚ C negligible
network former

hydroxyl group

network modifier

silicon

bridging oxygen

non-bridging oxygen
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Growth of SiO2 from Si

• in dry (<< 20 ppm H2O) oxygen
– Si  +  O2 → SiO2
– once an oxide is formed, how does this chemical reaction 

continue?
• does the oxygen go “in” or the silicon go “out”?

• density / formula differences
– ρSiO2 = 2.25 gm/cm3 , GMW = 60
– ρSi = 2.3 gm/cm3 , GMW = 28
– oxide d thick consumes 

a layer 0.44d thick of Si
0.44d

d SiO2

original silicon 
surface

• “bare” silicon in air is “always” covered with about 15-20 Å 
of oxide, upper limit of ~ 40 Å
– it is possible to prepare a hydrogen terminated Si surface to 

retard this “native” oxide formation
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“Wet” oxidation of Si

• overall reaction is
– Si + 2 H2O  → SiO2 + H2

• proposed process
– H2O + Si-O-Si → Si-OH + Si-OH
– diffusion of hydroxyl complex to SiO2 -Si interface

Si - OH                  Si - O - Si
+ Si - Si → + H2

Si - O H                 Si - O - Si

• this results in a more open oxide, with lower density, 
weaker structure, than dry oxide 
– ρwet ≈  2 . 15 gm / cm3
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Oxide growth kinetics

gas oxide silicon

x

• basic model is the Grove and Deal Model
– supply of oxidizer is limited by diffusion through oxide to 

growth interface
• Fick’s First Law: flux j = − D

∂ Noxidizer
∂ x

co
nc

en
tr

at
io

n

moving growth 
interfaceN0

N1

• simplest approximation:
∂ N
∂ x

= −
N0 − N1

x
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Oxidizer concentration gradient and 
flux

co
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gas oxide silicon

moving 
growth 

interface

x

N0

N1
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• N0 is limited by the solid solubility limit of the oxidizer in the oxide!
– N0

O2 ~ 5 x 1016 cm-3 @ 1000˚ C
– N0

H2O ~ 3 x 1019 cm-3 @ 1000˚ C
• flux of oxidizer j’ at SiO2 / Si interface consumed to form new oxide

j' = k ⋅ N1

– k is the chemical reaction rate constant
• in steady state, flux in must equal flux consumed

j' =
steady state

j ⇒ k ⋅ N1 = − D ⋅ −
N0 − N1

x
 
 

 
 j =

D ⋅ N0
x + D

ksolve for N1, sub 
back into flux eq
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Relation between flux and interface 
position

• flux: #oxidizer molecules crossing interface per unit area 
per unit time
– # cm-2 sec-1

• rate of change of interface position:
dx / dt (interface velocity)

– cm sec-1

• n: # of oxidizer molecules per unit volume of oxide:

n =
ρSiO2 ⋅NA
GMWSiO2

⋅
2 for H2O
1 for O2

 
  = 2.25 × 1022 cm−3 ⋅

2 for H2O
1 for O2

 
  

– # cm-3

• then relation is just
d x
d t

=
j
n

=
DN0 n

x + D k

– now integrate with appropriate initial condition
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Grove and Deal relation

• setting 
– 2D/k = A 

• function of what’s diffusing, what it’s diffusing in, and what it 
reacts with

– 2DN0/n = B
• function of what’s diffusing and what it’s diffusing in

– initial condition x (t = 0) = xi

• integration gives

( ) 







−

τ+
+⋅= 1

B4A
t1

2
Atx 2 LiveMath

– where τ represents an “offset” time to account for any oxide 
present at t = 0

τ =
xi( )2 + A⋅ xi

B
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Limiting behavior of Grove & Deal 
oxidation model ( ) 








−

τ+
+⋅= 1

B4A
t1

2
Atx 2

t + τ << A 2 4 B• “short times”

x t( ) ≈
A
2

⋅ 1 + 1
2 ⋅

t +τ
A2 4B

 

 
  

 
 − 1

 

  
 

  =
B
A

⋅ t +τ( )x t( ) =
A
2

⋅ 1 +
t +τ

A2 4B
− 1

 

  
 

  

– thickness is linearly increasing with time
• characteristic of a reaction rate limited process

– B/A is the “linear rate constant”

n
kN

k
D2

n
ND2

A
B 00 ⋅

=





 ⋅







 ⋅⋅

=

• linear rate constant depends on
– reaction rate between oxidizer and silicon (k) AND 
– solid solubility of oxidizer in oxide (N0)
– temperature dependence mainly from reaction rate
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Rate constants and 
Arrhenius plots

• thermally activated process
– i.e., process must thermally 

overcome an energy barrier 0.000 2

0.000 4

0.000 6

0.000 8

400 600 800 1x10+003 1.2x10+003 1.4x10+003

temperature

y EA = 1eV

EA = 0.5eV

LiveMathkT
E

o

A

eyy
−

⋅=

0 .001 0.001  5 0.002 0 .002  5 0 .003

0

0

1/[temperature]

log[y]
EA = 1eV

EA = 0.5eV
• plot log(y) vs 1/T

– if process has the simple 
thermally-activated behavior 
you will get a straight line!  
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Rate constant behavior: linear rate constant

– linear rate constant depends 
on

• reaction rate between 
oxidizer and silicon (k)

– is orientation 
dependent

– temperature 
dependence mainly 
from energy required 
to break Si-Si bond

– AND 
• solid solubility of oxidizer 

in oxide (N0)

B
A

=
2DN0

n
 
 

 
 

2D
k

 
 

 
 =

N0 ⋅k
n

H20 (640 Torr)
EA = 2.05 eV

dry O2
EA = 2.0 eV

(111) Si

(111) Si
(100) Si

(100) Si

Temperature 1000/T (K-1)
Li

ne
ar

r a
te
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A
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1
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adapted from Ghandhi

B A 111( )
B A 100( )

= 1.68

plane available
bonds

(100) 6.8 x1014cm-2

(111) 11.7 x1014cm-2

ratio 1.7 (from Sze, 2nd ed., p. 110)

( ) ( )τ+⋅≈ t
A
Btx

( ) 







−

τ+
+⋅= 1

B4A
t1

2
Atx 2

t + τ << A 2 4 B
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Limiting behavior of Grove & Deal 
oxidation model ( ) 2

A tx t 1 1
2 A 4B

τ +
= ⋅ + − 

 

t + τ >> A 2 4 B• “long times”

x t( ) =
A
2

⋅ 1 +
t +τ

A2 4B
− 1

 

  
 

  x t( ) ≈
A
2

⋅
t +τ

A2 4B

 

  
 

  = B ⋅ t +τ( )

– dependence is “parabolic”: (thickness)2 ∝ time
• characteristic of a diffusion limited process

– B is the “parabolic rate constant”

B =
2 ⋅ D ⋅ N0

n
• parabolic rate constant depends on

– diffusivity of oxidizer in oxide (D) AND 
– solid solubility of oxidizer in oxide (N0)
– temperature dependence mainly from diffusivity
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Rate constant behavior: parabolic rate 
constant

B =
2 ⋅ D ⋅ N0

n( ) ( )τ+⋅≈ tBtx
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• parabolic rate constant depends 
on
– diffusivity of oxidizer in oxide (D)

and solid solubility of oxidizer in 
oxide (N0)

Solid solubility
@ 1000˚C
H2O 3 x 1019cm-3

O2 5 x 1016cm-3

• is NOT orientation dependent
• IS oxidizer dependent
• temperature dependence mainly from 

diffusivity of oxidizer in oxide

adapted from Ghandhi
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Effect of Si doping on oxidation 
kinetics

• boron
– k = Cox / CSi ~  3
– dopants accumulate in oxide

co
nc

en
tr

at
io

n

oxide silicon

k > 1, slow SiO2 diffuser

• phosphorus
– k = Cox / CSi ~  0.1
– dopants “pile-up” at silicon surface

• little effect on linear rate constant B/A ( = 
Nok / n)

• can increase parabolic rate constant B ( = 
2DNo / n )

– really only significant for 
Nboron > ~1020 cm-3

co
nc

en
tr

at
io

n

oxide silicon

k < 1, slow SiO2 diffuser

• little effect on parabolic rate constant B
• increases linear rate constant B/A

– again, really only significant for 
Nphosphorus > ~1020 cm-3
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Oxidation thicknesses

• wet oxidation
– 640 Torr partial pressure is typical 

(vapor pressure over liquid water 
@ 95˚C)

• dry oxidation
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Pressure Effects on Oxidation

• grow thick oxides at reduced 
time / temperature product 

– use elevated pressures 
to increase 
concentration of oxidizer 
in oxide

• for steam, both B 
and  B/A ~ linear 
with pressure

O
xi

de
Th

ic
kn

es
s

(m
ic

ro
ns

)

Time (hour)
0.2 1 10

0.1

1

20 atm
Pyrogenic steam
900 º C

10 atm

5 atm

1 atm(111)
(100)

adapted from Sze, 2nd, p. 122

• rule of thumb:  
constant growth 
rate, if for each 
increase of 1 atm
pressure, 
temperature is 
reduced ~ 30˚C.

– pressures up to 25 atm
have been used 
(commercial systems: 
HiPOx, FOX)
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Oxidation isolation

• how do you insulate (isolate) one device from another?
– what about using an oxide?

• try growing it first since it’ll be long, high temp
• now etch clear regions to build devices in

silicon

oxide

oxidation , etch

devices

• it doesn’t do any good!!
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Masking of oxidation and isolation 
techniques

• would like to form thick oxide between device regions with minimum 
step heights
– mask oxidation using material with low water diffusivity / 

solubility: Local Oxidation of Silicon (LOCOS) process
• Si3N4 (silicon nitride)
• induces high stress, must place “pad layer” below to prevent 

dislocations
– for oxide pad layer,  tpad ~ 0.25 tnitride

– do have lateral diffusion at mask edge, produces “bird’s beak”
• lateral encroachment ≈ oxide thickness
• can reduce using more complex “pads”

– SiO2 / poly / nitride (~15nm/50nm/150nm) helps

silicon

pad
nitride mask

SiO2

bird’s beak

before oxidation after oxidation
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Use of SiO2 as a diffusion mask
• mask against boron, phosphorus, arsenic diffusion

– most impurities transported to slice surface as an oxide
• P2O5, B2O3

– reacts with oxide to form mixed phosphosilcate (or borosilicate) glass
– reaction continues until full thickness of masking oxide is converted

• doping of underlying Si commences

adapted from
Nicollian and Brews, p. 732
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Other problems in oxidation: MOS 
threshold stability

Metal Oxide Silicon

image
charge

-

-

-

fixed surface
states

image
charge

mobile ionized impurities in
oxide (sodium), Qm

-
-
-
-
-
-
-
-
-
-

+
+
+
+
+
+
+
+
+
+

• for an MIS structure
– if ionized impurities are 

in the insulator, what 
happens? 

– if the ionized impurities 
are close to the metal, 
they are screened, and 
the silicon surface 
remains “unchanged”

• threshold voltage of MOS 
device is critically dependent 
on the location and amount 
of mobile ionic 
contamination in SiO2 gate 
insulator
– stability can be adversely 

affected 
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Bias-Temperature-Stress (BTS) 
technique

Metal Oxide Silicon

E ≈ 1MV/cm

T ≈ 200°C

-

-

-

mobile ionized impurities 
in oxide (sodium), Qm

+
+
+
+
+
+
+
+
+
+

– apply field of 
approximately 1MV/cm 
between capacitor 
metallization and 
substrate

– heat sample to ~200o C to 
increase diffusion rate of 
Na+

• allows evaluation of 
contamination levels
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BTS impurity drift

image 
charge

Metal Oxide Silicon

-

-

-

mobile ionized impurities 
in oxide (sodium), Qm

+

+
+
+
+
+

+
+
+
+

-

-

-

fixed surface 
states

image 
charge

-

-
-

-
-
-
-

external 
electric 

field

– apply field of 
approximately 1MV/cm 
across gate insulator

– heat sample to ~200o C to 
increase diffusion rate of 
Na+

• can cause surface 
inversion!!

• process is reversible!

• most of the impurities 
have drifted to near the 
silicon surface
• screening now due to 

electrons at silicon 
surface
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C-V measurements

CT

Cox

before BTSafter BTS ∆Qm / Cox

p-type 
substrate

voltage (metal wrt substrate)

ca
pa

ci
ta

nc
e

• measure C-V curves before and after BTS
• Qm ≈ Cox x ∆Vt
• ρ ≈ Qm / toxAcapq

• this occurs even at room temperature!
– threshold voltage shift ∆Vt can be MANY volts!



Dean P. Neikirk  © 1999, last update October 2, 2002 23 Dept. of ECE, Univ. of Texas at Austin

Other problems in oxidation: oxidation 
induced stacking faults

• typically ~95% of all stacking faults are OSFs
• essentially an “extra” (111) plane 

– density can vary from ~0 to 107 / cm2

• highly dependent on process (high temperature) history
– “size” (length) at surface can be many microns

• growth is related to presence of excess “unoxidized” Si at 
Si-SiO2 interface

• heterogeneous coalescence of excess Si on nucleation 
centers produce OSFs
– any process that produces an excess of Si vacancies will 

inhibit OSF formation/growth
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Chlorine Gettering in SiO2

• effects of chlorine during oxidation
– reduction of OSFs
– increased dielectric breakdown strength
– improved minority carrier lifetimes
– improved MOS threshold stability

• when oxide is grown in presence of chlorine the Cl- getters ionic 
contaminants such as Na+

• Cl in gas stream reacts with Na diffusing from the furnace walls
• Cl- is incorporated into the grown oxide near the silicon interface

(~20nm from Si) and can capture mobile sodium preventing 
threshhold instabilities

• efficiency of chlorine gettering can be evaluated by alternately 
drifting the Na+ back and forth from metal to silicon side of the 
test capacitor

• only effective for oxidation temperature above ~1100˚ C
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Restrictions on the use of Cl Gettering

• chlorine injection techniques
– mix HCl in O2 gas stream

• must be VERY dry or severe corrosion problems can occur
• produces large quantities of H2O in furnace:  4HCl + O2 Ö 2Cl2 + 2H2O

– mix trichloroethylene (TCE) / trichloroethane (TCA) in O2 gas stream
• produces less water:

C2HCl3 + 2O2 Ö HCl +Cl2 + 2CO2
• for TCE must have large excess of O2 present to prevent carbon 

deposits
– under low temperatures and low oxygen conditions can form 

phosgene COCl2
• only effective if oxidation temperature ≥ 1100˚ C

– large Cl concentrations, very high temperatures, or very long oxidation 
times can cause rough oxides

– very high Cl can cause blisters and separation of SiO2 from Si
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Gate Oxide thickness trends
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• MOS oxide thickness scales with gate length
– circa 1998 thickness was ~ 4nm (64M and 256M DRAM technology)
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Oxidation thicknesses: Grove & Deal 
calculations
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Problems with the simple Grove/Deal 
model of oxidation

– Arrhenius plots of linear and parabolic rate constants are not 
straight at low temperatures (T < 900o C).

– dry oxidation growth curves do not extrapolate back to zero 
oxide thickness at zero time

 T (°C) A (µm) B 
(µm2/hr)

B/A 
(µm/hr)

τ (hr) xi (nm)

1200 0.05 0.720 14.4 0 0 

1100 0.11 0.51 4.64 0 0 

1000 0.226 0.287 1.27 0 0 

 

Wet  

(640 
Torr 
H2O) 920 0.5 0.203 0.406 0 0 

1200 0.04 0.045 1.12 0.027 20 

1100 0.09 0.027 0.30 0.076 19 

1000 0.165 0.0117 0.071 0.37 23 

920 0.235 0.0049 0.02 1.4 26 

 

Dry 

(760 
Torr O2) 

700 ? ? ~2.6 
x10-3 

81  

 

 
– must use non-physical boundary condition of either an offset 

time τ or xi ≈ 200 Å in order to fit data
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Possible models to explain “rapid” 
initial growth

• micropores and intrinsic stress in low temperature thin 
oxides
– micropores:

• ~10 Å about 100 Å apart
• can visualize as small irregularities that mask oxidation, adjacent 

regions grow up around "holes"
• diffusion of O2 down pores can fit rapid initial growth stage and 

curvature of Arrhenius plots
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Field-Enhanced Diffusion

– experiments with external applied 
fields imply O2 is charged during 
oxidation: 

• O2 → O2
- + h+

– because of mobility differences 
have ambipolar diffusion effects:

-
-
-
-
-
-
-
-
-
-
-

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+

~λD

oxide

silicongas O2
-

hole

– range of effect is approximately the 
Debye length λD

• λD ∝ 1/√N
– ~150-200 Å for O2 in SiO2
– ~5 Å for H2O in SiO2
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Thin oxide growth
• thin oxides can be grown controllably

– use reduced pressure
• usually dry O2 oxidation
• need “pressure” (1 atms = 3x1019) near solid solubility limit (5x1016 @ 

1000˚C)
• ~ 10-3 atms (0.25 - 2 Torr used)

– use low temperature!!!
– intrinsic stress in low 

temperature-grown 
oxides:

• low temp oxides tend 
to have higher density

• not thermal expansion 
stress

– at high temp 
viscosity of SiO2
low enough to 
allow plastic flow 

– at low temp 
viscosity is too 
high

adapted from Sze, 2nd ed,p. 116.
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ITRS roadmap (2000) requirements
(http://public.itrs.net/Files/2001ITRS/Home.htm )

0.6-0.832201140

0.8-1.245200860

1.0-1.565200590

1.5-1.985-902002130

equivalent 
gate oxide 

thickness (nm)

min gate 
length (nm)year“technology 

node” (nm)

• 2005 projections require lgate ~ 65nm, “effective oxide thickness” ~ 
1-1.5nm

– “EOT” :

– problem: excessive leakage current and boron penetration for oxide 
thicknesses < 1.5nm

– alternative “high k” dielectrics

2

r
physical

r SiO

EOT t ε
ε

= ⋅
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Diffusion Mechanisms
• probability of movement

–

substitutional 
impurity vacancy

interstitial 
impurity

interstitialcy
mechanism

, νo ~ 1013 - 1014 sec-1ν ≅ 4νo e− E kT

• interstitial diffusers
– Emove ~ 0.6 - 1.2 eV

• T = 300K: ν ~ 1 jump 
per minute

• T = 1300K: ν ~ 109

jumps per sec

• substitutional diffusers
– Emove ~ 3 - 4 eV

• T = 300K: ν ~ 1 jump 
per 1030 - 1040 years!

• T = 1300K: ν ~ few 
jumps per sec
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