Deposited thin films

- need to be able to add materials "on top" of silicon
 - both conductors and insulators
- deposition methods

- physical vapor deposition (PVD)
 - thermal evaporation
 - sputtering
- chemical vapor deposition (CVD)
- general requirements
 - good electrical characteristics
 - free from pin-holes, cracks
 - low stress
 - good adhesion
 - chemical compatibility
 - with both layer "below" and "above"
 - at room temperature and under deposition conditions

Kinetic theory of gases

- for a gas at STP:
 - N ~ 2.7 x 10^{19} molecules/cm³
 - $N \propto pressure$
 - one atmosphere = 1.0132×10^5 pascal = 1.01 bar
 - = 760 Torr (mm Hg)
 - 1 Pascal = 1/132 Torr ~ 10⁻⁵ atms
- fraction of molecules traveling distance d without colliding is

$$\frac{n_{no \ collisions}}{n_{gas}} = e^{-\frac{d}{\lambda}}$$

$$\lambda \text{ is the mean free path} \qquad \lambda = \frac{k \cdot \tilde{T}}{P \cdot \pi \cdot \sigma^{2} \cdot \sqrt{2}}$$

$$\cdot \text{ at room temp} \qquad \lambda \sim 0.7 \text{ cm / P (in pascals)} \\ \sim 5.3 \times 10^{-3} \text{ cm / P (in Torr)}$$

$$\cdot \text{ at room temp and one atmosphere}$$

 λ ~ 0.07 μm

Velocity distribution

- for ideal gas, velocity distribution is Maxwellian
 - we'll use

$$\overline{c} = \sqrt{\frac{kT}{2\pi m}}$$

- ~ 900 miles/hour at rm temp
- rate of surface bombardment (flux)

$$j_{gas} (\#/unit \ area \cdot time) = n_{gas}^{unit \ volume} \cdot velocity = \underbrace{\left(\frac{P}{kT}\right)}_{ideal \ gas \ law} \cdot \frac{-}{c} = \frac{P}{\sqrt{2\pi \ m \ k T}}$$

$$P \cdot \underbrace{V}_{unit \ vol} = n \cdot k \cdot T$$

$$P \cdot \underbrace{V}_{unit \ vol} = n \cdot k \cdot T$$

- j = 3.4 x 10²² (# / cm² • sec) • P / √MT

τ

- P in Torr, M is gram-molecular mass
- monolayer formation time τ
 - # molecules per unit area / bombard rate

$$\approx \frac{10^{15} \, cm^{-2}}{j} \approx \frac{2.6 \times 10^{-6}}{P \left(in \ Torr\right)} \, \sec$$

Impact of pressure on deposition conditions

- pressure influences
 - mean free path: $\lambda \propto$ 1/P
 - "contamination rate" : $\tau \propto 1/P$

	pressure (Torr)	number density (#/cm ³)	λ	n _{d=1m}	τ
rough vacuum	760	2.7 x 10 ¹⁹	0.07 µm	~ 0	3.3 nsec
	10 ⁻³	3.5 x 10 ¹³	5 cm	2x10 ⁻⁷ %	2.5 msec
high vacuum	10 ⁻⁶	3.5 x 10 ¹⁰	50 m	98 %	2.5 sec
very high vacuum	10 ⁻⁹	3.5 x 10 ⁷	50 km	100 %	42 min
	10 ⁻¹²	3.5 x 10⁴	50,000 km		29 days

ß

Impact of pressure on deposition conditions

- material arrival angular distribution
 - depends on mean free path compared to both size of system and size of wafer "steps"
- Case I: "atmospheric pressure": 760 Torr $\Rightarrow \lambda = 0.07 \ \mu m$
 - $\lambda << system & steps$
 - isotropic arrival on ALL surfaces
 - flat surfaces: 180°
 - inside corners: 90°
 ➡ thinner
 - outside corners: 270°
 ➡ thicker

assume material does NOT migrate after arrival!!

"low" pressure: $\lambda <<$ system, $\lambda >$ step

- Case II: 10⁻¹ Torr $\Rightarrow \lambda = 0.5 \text{ mm}$
 - small compared to system, large compared to wafer features
 - isotropic arrival at "flat" surface
- BUT no scattering inside "hole"!!
 - top flat surface: 180°
 - "inside"
 surface:
 depends on
 location!
 - shadowing by corners of features
 - "anisotropic" deposition

ß

assumes material does NOT migrate after arrival!!

ß

"vacuum" conditions: λ > system, λ >> step

- case III: 10⁻⁵ Torr $\Rightarrow \lambda = 5$ meters
 - long compared to almost everything
- anisotropic arrival at all surfaces!
 - geometric "shadowing" dominates
- anisotropic deposition
 - "line-of-sight" deposition
 - very thin on "side walls"
 - very dependent on source configuration relative to sample surface

assumes material does NOT migrate after arrival!!

A

Physical vapor deposition: thermal evaporation

- high vacuum to avoid contamination
 - "line-of-sight" deposition, poor step coverage
- heating of source material
 - potential problem: thermal decomposition
- rates ~ 0.1- few nm/sec
 - typically P_{vapor} ~ 10⁻⁴ Torr <u>immediately above source</u>
 - "pressure" at sample surface is much lower
 - few monolayers per sec ⇒
 P_{equiv} ~ 10⁻⁶ Torr

Thermal evaporation

- main heating mechanisms
 - resistively heat "boat" containing material

- tungsten (mp 3410°C), tantalum (mp 2996°C), molybdenum (mp 2617°C) very common "heater" materials
- reaction with boat potential problem
- electron beam evaporator
 - source material "directly" heated by electron bombardment
 - can generate x-rays, can damage substrate/devices
 - I_{beam} ~ 100 mA, V_{acc} ~ kV ➡ P ~ kWatts

- inductively heat material (direct for metals)
 - essentially eddy current losses

A

Sputtering

- use moderate energy ion bombardment to eject atoms from target
- "purely" physical process

ß

- can deposit almost anything

from the SIMS WWW server http://www.simsworkshop.org/WWW/Siteinfo/gi fstoshare/SIMSlogo1.gif

adapted from: Campbell, p. 295

Dean P. Neikirk © 1999, last update November 14, 2002

ß

Sputtering

- plasma generates high density, energetic incident particles
 - magnetic field used to confine plasma, electric field ("bias") to accelerate
 - dc plasma: metals
 - rates up to ~1 μm / minute
 - rf plasma: dielectrics
- typically inert (noble) gas used to form incident ions
 - ion energies ~ few hundred eV ; ejected atoms ~ tens eV
 - ~10⁻² Torr, λ ~ 5 mm
 - better step coverage than evaporation

E field plasma **B** field Removable plasma Anode Water cooling cooline confinement shield lacket Annula cavity Ground Cathode (target) Anode target S-gun conical magnetron

adapted from: Campbell, p. 298

11

Chemical vapor deposition

- general characteristic of gas phase chemical reactions
 - pressures typically atmospheric to 50 mTorr
 - λ ranges from << 1 µm to ~ 1 mm
 - reactions driven by
 - thermal: temperatures 100° 1000° C
 - higher temperature processes increase surface migration/mobility
 - plasma
 - optical
- example materials
 - polycrystalline silicon (poly)
 - silicon dioxide
 - phosphosilicate, borosilicate, borophosphosilicate glasses
 - PSG, BSG, BPSG
 - silicon nitride

ED V C V

ß

CVD system design: hot wall reactors

chamber wall heat entire system: (tube) thermally driven reactions furnace heater requires leak-tight, load lock wafers gas flow sealed system avoid unwanted contamination, escape furnace heater of hazardous materials (the reactants) chemical scrubbers atmospheric: high filters deposition rates vacuum pumps low pressure (LPCVD): mass flow mass flow mass flow lower rates, good controller controller controller uniformity gas supply qas supply gas supply furnace heater load lock gas flow pump plasma assisted CVD: PECVD rf in wafers graphite gas supply

rf electrode

Cold wall reactors

- heat substrate "only" using
 - resistive heating (pass current through "susceptor")
 - inductive heating (external rf fields create eddy currents in conductive susceptor)
 - optical heating(lamps generate IR, absorbed by susceptor)
- advantages
 - reduces contamination from hot furnace walls
 - reduces deposition on chamber walls
- disadvantages
 - more complex to achieve temperature uniformity
 - hard to measure temperature
 - inherently a non-isothermal system

Gas flow in CVD systems

- purely "turbulent" flow
 - reactants are well mixed, no "geometric" limitations on supply of reactants to wafer surface
 - typical of LPCVD tube furnace design
- interaction of gas flow with surfaces
 - away from surfaces, flow is primarily laminar
 - friction forces velocity to zero at surfaces
 - causes formation of stagnant boundary layer

gas flow lines
x d
$$d = \sqrt{\frac{\mu \cdot x}{\rho \cdot v}}$$

- v: velocity; ρ: density; μ: viscosity
- reactant supply limited by diffusion across boundary layer
- geometry of wafers relative to gas flow critical for film thickness uniformity
 - to improve boundary layer uniformity can tilt wafer wrt gas flow

A

ß

Basic configurations

horizontal tube reactor

• parallel plate plasma reactor

 "pancake" configuration is similar

- barrel reactor
- single wafer systems

from: http://www.appliedmaterials.com/prod ucts/pdd.html

Producer

Dean P. Neikirk © 1999, last update November 14, 2002

Dept. of ECE, Univ. of Texas at Austin

Material examples: polysilicon

- uses
 - gates, high value resistors, "local" interconnects
- deposition
 - silane pyrolysis: 600°-700° C SiH₄ → Si + 2H₂
 - atmospheric, cold wall, 5% silane in hydrogen, ~1/2 μm/min
 - LPCVD (~1 Torr), hot wall, 20-100% silane, ~hundreds nm/min
 - grain size dependent on growth temperature, subsequent processing
 - 950° C phosphorus diffusion, 20 min: ~1 μm grain size
 - 1050° C oxidation: ~1-3 μm grain size
- in-situ doping
 - p-type: diborane B_2H_6 : ρ ~ 0.005 Ω-cm (B/Si ~ 2.5x10⁻³)
 - can cause substantial increase in deposition rate
 - n-type: arsine AsH₃, phosphine PH₃ : ρ ~ 0.02 Ω -cm
 - can cause substantial decrease in deposition rate
- dope after deposition (implant, diffusion)

Metal CVD

tungsten

<mark>ປ</mark>ິ

- WF₆ + 3H₂ \leftrightarrows W + 6HF
- cold wall systems
- − ~300°C
- can be selective
- adherence to SiO₂ problematic
 - TiN often used to improve adhesion
 - causes long "initiation" time before W deposition begins
- frequently used to fill deep ("high aspect ratio") contact vias
- aluminum
 - tri-isobutyl-aluminum (TIBA)
 - LPCVD
 - ~200°-300° C, tens nm/min deposition rate
- copper
 - Cu β-diketones, ~100°-200° C

CVD silicon dioxide

- thermally driven reaction
 - mid-temperature: ~ 500°C
 - "LTO" (low-temp. oxide) T < ~500°C
 - $SiH_4 + O_2 \rightarrow SiO_2 + H_2$
 - cold-wall, atmospheric, ~0.1 μm/min
 - hot-wall, LPCVD, ~0.01 μm/min
- plasma-enhanced reaction (PECVD)
 - low temperature: ~250°C
- high temperature: ~700°C
 - tetraethyl orthosilicate (TEOS)
 - $Si(OC_2H_5)_4 \rightarrow SiO_2 + by-products$
- new materials

- low "k" dielectrics
 - interlevel insulation with lower dielectric constants (k < ~3)
 - fluorinated oxides, spin-on glasses, organics
- high k dielectrics: k > ~25-100's
 - gate insulators, de-coupling caps

summary of SiO₂ characteristics

	plasma	SiH ₄ + O ₂	TEOS	thermal
temperature	~200°C	~450°C	~700°C	~1000°C
composition	SiO _{1.9} (H)	SiO ₂ (H)	SiO ₂	SiO ₂
step coverage	non- conformal	non- conformal	conformal	"conformal"
thermal stability	loses H	densifies	stable	stable
density (g/cm³)	2.3	2.1	2.2	2.2
stress (Mdyne/cm²)	3C - 3T	3Т	1C	3C
dielectric strength (MV/cm)	3-6	8	10	11
index of refraction (632.8 nm)	1.47	1.44	1.46	1.46
ϵ_r (low freq.)	4.9	4.3	4.0	3.9

adapted from Sze, 2nd, p. 259.

to a state of the state of the

Phosphosilicate glass (PSG)

- good barrier to sodium migration
- can be used to "planarize" topography using "glass reflow"
 - plastic flow of PSG at T > ~1000°C
- deposition
 - add phosphine during pyrolysis of silane $4PH_3 + 5O_2 \rightarrow 2P_2O_5 + 6H_2$
 - P₂O₅ incorporated in SiO₂
- problems / limitations
 - for reflow, need high P content to get appreciable flow at "reasonable" time/temps
 - P₂O₅ is VERY hygroscopic
 - for > ~ 8% P_2O_5 can cause corrosion of AI
 - normally limit to < ~ 6%

Glass reflow process

22

- to "even out" step edges can use plastic flow of overcoating dielectric
- usually last "high" temperature step
 - "first fusion"
 - wet, high T ambient
 - densifies, prepares layer for window etch
 - only small reflow if T < 1000°C
 - second fusion
 - after contact windows are etched
 - can be wet or dry ambient

reflow: 1100°C, steam, 20 min

Rapid flow and BPSG

- can add both phosphorus and boron to glass
 - ~4% P and ~4% B
 - avoids hygroscopicity problems, lowers glass transition temperature
 - examples
 - PSG, 8% P, 950°C / 30 min: no appreciable reflow
 - BPSG, 4% each, 830°C / 30min: 30° flow angle
- can also use rapid thermal process for heating

from: J. S. Mercier, Rapid flow of doped glasses for VLSI fabrication, Solid State Technology, July 1987, p. 87.

23

Silicon nitride Si₃N₄

• uses

ß

- diffusivity of O_2 , H_2O is very low in nitride
 - mask against oxidation
 - protect against water/corrosion
- diffusivity of Na also very low
 - protect against mobile ion contamination
- deposition
 - stoichiometric formulation is Si₃N₄
 - in practice Si/N ratio varies from 0.7 (N rich) to 1.1 (Si rich)
 - LPCVD: ~700°C 900°C
 - $3SiH_4 + 4NH_3 \rightarrow Si_3N_4 + 12H_2$; can also use $Si_2Cl_2H_2$ as source gas

24

- Si/N ratio 0.75, 4-8% H
- $\rho \sim 3 \text{ g/cm}^3$; n ~ 2.0; k ~ 6-7
- stress: ~10 Gdyne/cm², tensile
- PECVD: ~250°C 350°C
 - $aSiH_4 + bNH_3 \rightarrow Si_xN_yH_z + cH_2$
 - $aSiH_4 + bN_2 \rightarrow Si_xN_yH_z + cH_2$
 - Si/N ratio 0.8-1.2, ~20% H
 - ρ ~ 2.4-2.8 g/cm³ ; n ~ 1.8-2.5; k ~ 6-9
 - stress: ~2C 5T Gdyne/cm²

Safety issues in CVD

- most gases used are toxic, pyrophoric, flammable, explosive, or some combination of these
 - silane, SiH₄
 - · toxic, burns on contact with air
 - phosphine
 - very toxic, flammable
 - ammonia
 - toxic, corrosive
- how to deal with this?
 - monitor!
 - limit maximum flow rate from gas sources
 - helps with dispersal problem associated with gases
 - double walled tubing, all welded distribution networks

- growth of thin crystalline layers upon a crystalline substrate
 - heteroepitaxy
 - dissimilar film and substrate
 - autoepitaxy
 - same film and substrate composition
- techniques
 - Vapor-Phase Epitaxy (VPE)
 - CVD: Metal-organic VPE (MOCVD, OMVPE, ...)
 - PVD: Molecular Beam Epitaxy (MBE)
 - Liquid-Phase Epitaxy (LPE)
 - mainly for compound semiconductors
 - Solid-Phase Epitaxy
 - recystallization of amorphized or polycrystalline layers
- applications
 - bipolar, BiCMOS IC's
 - 2-5 µm in high speed digital
 - 10-20 µm in linear circuits
 - special devices
 - SOI, SOS
 - HEMT, MODFET, HBT

Summary Slide

- Deposited thin films
- Kinetic theory of gases
- Physical vapor deposition: thermal evaporation
- Sputtering
- <u>Chemical vapor deposition</u>
- next topic: <u>epitaxy</u>

