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How high/fast can we go??

• Limits set by:

- electromagnetics and relativity

- material properties

- fabrication capabilities

- "PARASITICS"

• In a complete, useful "system," you have to 
worry about everything!

- "performance" is a hard thing to quantify
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• Maxwell's equations, differential form:

• constitutive relations (material properties):

All of electromagnetics in one slide
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So what??

• Wave equations
- source-free, linear, isotropic, homogeneous region, 

assuming time dependence is ejωt:

- which gives the Helmholtz eq.:

- the wavenumber, or propagation constant for the wave 
solution to this differential eq. is:

- phase and group velocities for this case are:
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What happens in a conductor?

• you have a "dielectric" when:

• and a conductor if:
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"Semiconductor" (i.e., material) equations:

• Poisson's equation:

• continuity eq.:

• "Ohm's" law:

• but what is σ??
- typically we use:

- where µ is the "mobility"
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Questions so far:

• How big can σ be?

- how big can µ be?

- how high are velocities?

• How big are the dielectric relaxation 
frequencies?
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What affects the "mobility" in a 
semiconductor?

• We need to look at "band structure" first
• consider a free charged particle

- kinetic energy E

- momentum - wave vector relation

- energy-wave vector relation E(K)

- first derrivative of E(k)

- second derrivative
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Free particle under influence of 
constant Electric Field

• force

• Newton's second law

• integrate to get velocity, starting at rest

• current density ∝  velocity

• doesn't look like Ohm's law unless 
"conductivity" is linearly increasing with time!
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Are charged carriers in a material free?

• NO!

- "particles" collide; are not freely accerlerated

- if there are randomizing collisions, with a mean time 
between collisions of τ, the mean "drift" velocity is

- looks like a "free" particle with time of flight τ /2
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What happens in a periodic crystal?

• quantum mechanical solution in terms of 
"waves"

• periodicity induces "band structure"

- generally shown as E(k) relations

• "particles" are "free" in a band, made up of a 
superposition of wavefunctions from that 
band

- effective mass 

- mobility

• want low m* and long "relaxation" time 
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• from: S. M. Sze, “High-Speed 
Semiconductor Devices,” . New York: 
John Wiley & Sons, Inc., 1990, p. 18. •from: S. M. Sze, “High-Speed 

Semiconductor Devices,” . New York: John 
Wiley & Sons, Inc., 1990, p. 15.
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How do we fabricate fast things?

• Make it SMALL!!

• Silicon or GaAs?

- silicon is a much more mature technology

• better processing

• much higher levels of integration

- GaAs has somewhat "better" electronic properties

• higher mobilities

• high vsat 's

• mechanical and thermal properties are worse

• BUT 99% OF THE PERFORMANCE IS IN HOW 
SMALL YOU MAKE THE DEVICE!
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• from:S. M. Sze, “High-Speed Semiconductor Devices,” . New York: 
John Wiley & Sons, Inc., 1990, p.5.
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And what are parasitics?

• consider a diode with wires attached

• how do you find the "impedance" of this device 
at high frequencies/speeds?

• does the "package" matter?

• is the device dominated by "intrinsic" device 
physics or by its "extrinsic" connection to the 
rest of the world?
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"Packaged" diode model

• need two things

- "device" model

• equivalent circuit

• 5 µm diameter diode, 0.1 µm depletion width

• forward bias assume 105 amps/cm2 at 0.1 V

• reverse bias assume "open"

• parasitic contact resistance 5x10-7  cm2

- "package" model?
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"package" model: transmission line?

• transmission lines are "distributed" systems
- whenever the size of the circuit is large compared to the 

appropriate scale length (the electromagnetic wavelength 

here) the system cannot be represented by a single 

"lumped" circuit element
- generalized model in terms of infinitesimal circuit
- in time harmonic (ejwt) case get "telegraphist's equations":
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Traveling wave solutions for T-lines

• propagation constant γ:

• characteristic impedance Zo:

• for "low" loss or "high" frequency:
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"Input" impedance of a terminated 
T-line

• impedance is a function of both position and 
load:

• reflection coefficient is a convenient number:

• for a lossless line both are simple periodic 
functions:
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