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In the past decade, advanced heteroepitaxial technology has allowed the explo-

ration of a wide variety of semiconductor heterostructures in which the elec-

tronic properties can be varied signi�cantly over atomic length scales. Semi-

classical models of electron transport are not useful for the analysis of such

structures. Perhaps the most dramatic phenomenon illustrating the need for

advanced quantum transport models is resonant-tunneling across a double bar-

rier quantum well structure. Since the early work on resonant-tunneling, many

devices have been proposed that incorporate double barrier quantum wells, the

motivation being the increased functionality per device. Because signi�cant

regions in these devices can still be described by semiclassical equations, it is

highly desirable that the quantum transport equation have the structure of the

semiclassical Boltzmann equation, and reduce to it when appropriate. Such a

model is a�orded by the Weyl transform and the associated Wigner function.

In this work, a quantum transport model based on the Wigner function is de-

veloped for the analysis of heterostructure devices. Past work on the use of

the Wigner function has assumed that the e�ective-mass is spatially uniform,

clearly not the case in heterostructure devices. In this work, the spatially
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varying e�ective-mass has been correctly incorporated in the Wigner transport

equation. While past work using the Wigner function has been restricted to

relatively unimportant AlxGa1�xAs/GaAs heterostructure devices, this work

presents improvements in the numerical treatment of the Wigner transport

equation that are necessary to extend its application to the study of the more

important devices based on InyAl1�yAs/InxGa1�xAs heterojunctions.

With the aid of the quantum transport models developed during this

work, an intriguing memory switching phenomena was discovered in double

barrier resonant-tunneling diodes that contain N� � N+ � N� spacers. Ex-

perimentally, the devices can be reversibly switched between two conduction

curves. They retain memory of the curve last switched to, even after removal

of the external bias. Within the scope of the quantum transport models, the

phenomenon is explained by the existence of two self-consistent charge distri-

butions in the device, even when no external bias is applied.
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Chapter 1

Introduction

During the past few years, advanced heteroepitaxial technology has allowed

the exploration of a wide variety of semiconductor heterostructures in which

the electronic properties change signi�cantly over atomic length scales. The

semiclassical limit cannot be taken in modeling electron transport in such het-

erostructures, and fully quantum mechanical models are necessary. Perhaps

the most dramatic evidence of quantum phenomenon in semiconductor devices

motivating the need for advanced quantum transport models is the negative dif-

ferential resistance exhibited by resonant-tunneling diodes. Since the proposal

(Iogansen, 1964; Tsu & Esaki, 1973) and observation of resonant-tunneling

(Chang et al., 1974), it has been the focus of much attention during the last

20 years. Resonant-tunneling diodes have been studied for their potential in

high-frequency oscillators (Brown et al., 1991), pulse forming and trigger cir-

cuits ( �Ozbay et al., 1991), and for multivalued memory and logic (Seabaugh

et al., 1992; Micheel & Paulus, 1990). More recently, neural networks based

on vertically integrated resonant-tunneling diodes have also been demonstrated

(Levy & McGill, 1993).

Resonant-tunneling has also been the basis of more ambitious proposals

aimed at the needs of a post-VLSI era. Resonant tunneling transistors have

been proposed to extend the downscaling of electronic devices, and increase the

functional density of an integrated circuit (Reed et al., 1990; Seabaugh et al.,

1991; Yang et al., 1989; Bonnefoi et al., 1985; Beltram et al., 1988). The basic
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idea is to control the resonant levels and hence the current across an emitter-

collector multi-barrier quantum well structure. Such transistor action is feasible

if the resonant levels associated with the emitter-collector heterostructure are

well separated from the energy levels into which charge is injected by the base.

The energy levels associated with the base can then be used to independently

control the positions of resonant levels available for emitter-collector conduc-

tion. The transfer characteristics of such resonant tunneling transistors enable

the implementation of complex logic functions that would normally require

several transistors (Maezawa et al., 1993; Seabaugh et al., 1993).

The operation of heterostructure tunneling devices is most easily and

usefully understood in terms of the resonant states they support. In Chapter

2, a self-consistent model based on the e�ective-mass Schr�odinger and Poisson

equations is presented for the evaluation of transport across heterojunctions.

In this work, we obtain the e�ective-mass equation by exploiting the connec-

tion of the tight-binding approach to the �nite-di�erence formulation. A new

Hamiltonian for spatially varying parabolic energy bands, based on the Weyl

correspondence rule, is �nite-di�erenced to yield the e�ective-mass equation

for a spatially varying tight-binding energy band. The treatment of the bound-

ary conditions is based on the work of Frensley (1991) and Lent and Kirkner

(1990). Finally the model is extended to include the full � � X conduction

band edge in the position representation.

While adequate for describing the resonant states in a heterostruc-

ture, the Schr�odinger model cannot comprehend important processes such as

electron-phonon scattering. This is a serious limitation of the model, especially

since many quantum devices have signi�cant regions where transport is not

phase coherent or dissipationless. Di�culties also arise when a time-dependent

description is required. Although time-irreversible, non-Markovian boundary

conditions for the time-dependent Schr�odinger equation have been recently for-
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mulated (Hellums & Frensley, 1994), application of the time-dependent equa-

tion to the description of an entire system is impractical. Since the device

potential changes with time, the resonant states also change. Since the evolu-

tion of the system is not known apriori, for a proper treatment, the initial state

of the device must be evaluated with an in�nite basis of wave functions. Clearly,

descriptions based on individual wavefunctions must be abandoned for a more

appropriate kinetic theory of transport. To describe transport in general, it is

necessary to develop a model that comprehends both quantum interference and

processes such as electron-phonon scattering. It is also highly desirable that a

quantum transport equation have the structure of the semiclassical Boltzmann

equation, and reduce to it when appropriate.

Such a model is a�orded by the Weyl transform and the associated

Wigner function. In Chapter 3, a quantum transport model based on the

Wigner function is developed for the analysis of heterostructure diodes. After

showing how the Weyl transform casts the quantum transport problem into

the familiar language of semiclassical theory, the Wigner function is applied to

the study of heterostructure devices. Much of the past work on the Wigner

transport equation (Buot & Jensen, 1990; Frensley, 1990; Klukshdahl, Kri-

man, Ferry, & Ringhofer, 1989; Mains & Haddad, 1988) has assumed that

the e�ective-mass is spatially uniform, clearly not the case in heterostructures.

Only recently have there been attempts to incorporate position-dependent en-

ergy bands into the Wigner transport simulation of heterostructure devices

(Miller & Neikirk, 1991; Tsuchiya et al., 1991). It is shown that the equa-

tion derived by Tsuchiya et al. (1991) for transport in a position-dependent

parabolic energy band is inconsistent with the Weyl transform (see Appendix

A for a discussion and critique of the work of Tsuchiya et al.). While the ap-

proach of Miller and Neikirk (1991) is based on the discrete Weyl transform,

and leads directly to a discrete equation, it does not satisfy current continuity.

In this work, an equation of motion has been derived that is consistent with
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the Weyl transform and also satis�es current continuity.

A second issue addressed in Chapter 3 is that the band structure in real

semiconductors is far from being a parabola that extends to in�nite energy. It

is shown that expanding the real bandstructure in terms of its Fourier compo-

nents allows it to be elegantly incorporated into the Wigner transport equation.

Beyond allowing the incorporation of general energy bands into the transport

equation, the approach also leads to a more consistent discrete numerical model

(Gullapalli & Neikirk, 1994), resolving for example, the confusion concerning

the periodicity of the Wigner function (Miller, 1994).

To obtain any useful information, an accurate numerical model of the

Wigner transport equation must be developed. In the past, the issue of numer-

ical stability has been considered the most important, �delity to the physical

model receiving much less attention. In Chapter 4, it is shown that conventional

upwind schemes, chosen from stability concerns, are completely inadequate for

the description of AlAs/GaAs devices. While past work using the Wigner func-

tion has been restricted to relatively unimportant low aluminum mole-fraction

AlxGa1�xAs/GaAs heterostructure devices, this work presents improvements

in the numerical treatment of the Wigner transport equation that are neces-

sary to extend its application to the study of the more important devices based

on high conduction band o�set InyAl1�yAs/InxGa1�xAs heterojunctions (Gul-

lapalli & Neikirk, 1994). For the �rst time, we present the proper numerical

treatment of the Wigner transport equation in the presence of spatially varying

bandstructure.

Chapter 5 describes an intriguing memory switching phenomena in dou-

ble barrier resonant-tunneling diodes that contain N��N+�N� spacers (Gul-

lapalli, Tsao, & Neikirk, 1992). Discovered during a theoretical study of the

impact of the cathode side spacer on the tunneling characteristics, devices with

such spacers can be reversibly switched between two conduction curves. They
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retain memory of the curve last switched to, even after removal of the external

bias. Within the scope of the quantum transport models, the phenomenon

is explained by the existence of two self-consistent charge distributions in the

device, even when no external bias is applied. Chapter 6 concludes this disser-

tation with a summary and recommendations for future work.
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