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Appendix A

Comments on the model of Tsuchiya, Ogawa

and Miyoshi

The numerical model of Tsuchiya et al. (1991) for the Wigner transport equa-

tion in a spatially varying parabolic energy band su�ers from severe problems.

These problems manifest themselves in the physically unreasonable prediction

that as the e�ective mass in the barrier increases, the peak current density does

too. In this appendix, their equation is rewritten in a form that lends itself to

proper numerical treatment, and to comparison with our work.

Here we ignore the fact that the equation of Tsuchiya et al. (1991) is

inconsistent with the Weyl transform. It will be shown that except for one

term, their equation is identical to ours. The numerical model developed here,

for their transport equation, turns out to be very similar to that based on the

transport equation presented in chapters 3 and 4. Our numerical treatment

shows that the predictions of both models are very similar, as should be ex-

pected: di�erent correspondence rules yield similar results. This comparison

emphasizes the importance of proper numerical discretization.

Using the von Neumann equation for the \minimal Hermitian" Hamil-

tonian
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Tsuchiya et al. (1991) correctly derive the equation of motion for the Wigner
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function

f(q; k) = 2
Z
dr e2{kr�(q + r; q � r)

where q = (z + z0)=2 and r = z � z0:
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The kernels M1;M2;M3;M4 and VT , as given in Eqs. 7{13 of Tsuchiya et al.

(1991), are in an undesirable form in that they depend on derivatives of the

inverse e�ective-mass. After some manipulations, however, they can be written

in terms ofMe, Mo and V (the kernels in Eq. 3.21):

M1(q; k) = �8(k � k0)Me(q; k);

M2(q; k) = �8(k � k0)Mo(q; k);

M3(q; k) = �4Mo(q; k);

M4(q; k) = 4Me(q; k);

VT (q; k) = �4V(q; k): (A.3)

Substituting Eq. A.3 in Eq. A.2, we get
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All terms in the equation, except the last are identical to Eq. 3.20.

Following the discussion in chapter 4, the discrete Liouville superoper-

ator corresponding to Eq. A.4 is

Ljn;j0n0 = Tjn;j0n0 �
kn0Me
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yielding a much more accurate numerical model. Compare this with Eqs. 24{

29 of (Tsuchiya et al., 1991). To yield a form that is closest to Eq. 4.13, we

rearrange the above equation to obtain:

Ljn;j0n0 = Tjn;j0n0 �
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Comparing this to 4.13, the only di�erence is that the 2Mo
j0;n�n0�j0j term in

Eq. 4.13 is replaced with (Mo
j0+1n�n0 +Mo

j0�1n�n0)�j0j This is fairly accurate

when e�ective mass variations are not large.

Using the numerical model presented here, Fig. A.1 shows that Eq. A.2

correctly predicts the decrease in peak current with increasing barrier e�ective-

mass. In contrast, the numerical model of Tsuchiya et al. (1991), for the same

equation, predicts that the current increases with increasing barrier e�ective-

mass (as shown in chapter 4). Also compared are the uniform e�ective-mass

case and the predictions of Eq. 3.20.

The care required in developing a numerical model cannot be overem-

phasized. The �rst step of course, is to have the correct equation. In addition,
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Figure A.1: The predictions of our numerical treatment of the equation of
Tsuchiya et al. (dashed line), for the AlGaAs/GaAs diode discussed in chapter
4. The constant e�ective-mass curve is also shown. The proper numerical
treatment leads to the expected result that the current falls as the barrier
e�ective-mass increases. The prediction of the equation derived in this work
is also shown. A temperature of 77K is assumed and collisions are ignored.
First-order upwind di�erencing is used. Nq = 200, � = a, and Nk = 64.
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it is also necessary to have the equation in a form that is suitable for numerical

treatment. Finally, as discussed in chapter 4, during the discretization process,

care must be taken to retain the essential nature of the underlying problem.


