
Chapter 2

Schr�odinger-Poisson Model for Quantum

Transport

In conventional electron devices, the physical processes contributing to electron

transport can be usefully studied in the semi-classical limit by solving the

Boltzmann equation for the one-particle distribution function f(q; p) in phase-

space
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where v(q) is the self-consistent potential and E(q; p) is the energy band struc-

ture. The collision term takes into account relaxation mechanisms such as

electron-phonon scattering. Physical quantities of interest in device analysis

such as the particle density and current density can be obtained as averages

over the distribution function f(q; p):

n(q) =
1

2�

Z
dp f(q; p)

J(q) =
1

2�

Z
dp
@E(q; p)
@p

f(q; p) (2.2)

A major assumption in the semiclassical limit is that the evolution of

f(q; p) at any position depends only locally on the potential. This approx-

imation precludes quantum interference e�ects that arise from the non local

action of the potential. Therefore Eq. 2.1 cannot describe phenomenon such as

quantum mechanical tunneling through classically forbidden regions. While the

semi-classical approach has been very successful in the study of conventional
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devices, it fails completely in heterostructure devices that depend on quantum

interference e�ects for their operation.

Quantum interference e�ects are most easily studied using models based

on the e�ective-mass Schr�odinger equation. Electron transport is assumed to be

coherent throughout the device, dissipative mechanisms appearing only in the

device contacts. In this chapter, a single band Schr�odinger model is described

and applied to resonant-tunneling diodes.

This study is con�ned to electron transport in heterostructure devices

such as InyAl1�yAs/InxGa1�xAs double barrier diodes. Assuming a simple dou-

ble barrier potential superimposed on a uniform semiconductor, the validity of

the e�ective-mass approximation, even in the presence of strong barriers, is

semi-quantitatively demonstrated using a Wannier function basis constructed

by Pedersen et al. (1991) for the Kronig-Penny model. To treat the variation in

the bandstructure across a heterojunction, an e�ective-mass Hamiltonian based

on the Weyl correspondence rule, that has not been previously investigated in

the study of heterostructures, is proposed. The e�ective-mass treatment for a

heterostructure is facilitated by the concept of generalized Wannier functions.

However, since generalized Wannier functions are di�cult to construct explic-

itly for real heterostructures, the signi�cance of �nite-di�erence formulations

is discussed. The treatment of the boundary conditions is based on the work

of Frensley (1991) and Lent and Kirkner (1990). Finally, the model presented

here is extended to include the full ��X conduction band edge in the position

representation. The chapter concludes with an illustration of the model.

2.1 E�ective-mass Hamiltonians

When the energy band structure or the potential vary signi�cantly over atomic

length scales, it is necessary to invoke the Schr�odinger equation to describe the
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motion of electrons: 
� �h2

2mo

r2 � {�h
@

@t

!
	(z; t) + U(z)	(z; t) = 0 (2.3)

where mo is the free electron mass, 	(z; t) is the electron wavefunction, and

U(z) is a potential which includes the crystal potential and any external po-

tential. It is appealing to rewrite Eq. 2.3 as

(Ho + v)	(z; t) = {�h
@

@t
	(z; t) (2.4)

where Ho is the crystal Hamiltonian and v is the external potential. The

wavefunctions 	(z; t) can be expanded in the basis of Wannier functions as

	(z; t) =
X
n;R

�n(R; t)an(z � R) (2.5)

where an is the Wannier function in the nth band localized at the lattice site

R and �n the corresponding wave amplitude. Substituting 2.5 in Eq. 2.4, mul-

tiplying by a�
n
0 (z � R0) and integrating over the lattice we get

X
nR

Z
dz a�n0(z � R0)(Ho + v)an(z � R) = {�h

@�n0(R
0; t)

@t
(2.6)

Fourier expanding the energy band:

En(k) =
X
R

EnRe{kR

and using

Hoan(z �R) =
X
R0

En;R�R0an(z �R0)

we get (Ziman, 1972)

X
R0

EnR0�R�n(R
0; t) +

X
n0R0

Vnn0RR0� 0n(R
0; t) = {�h

@�n(R; t)

@t
(2.7)

where

Vnn0RR0 =
Z
dz a�n0(z � R0)v(z)an(z �R) (2.8)
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Alternatively, �n can be treated as a continuous envelope function de�ned ev-

erywhere instead of just at the lattice sites. In that case the following equation

results (Ziman, 1972):

"
En(�{r)� {�h

@

@t

#
�n(z; t)

�����
z=R

+
X
n0;R0

Vnn0RR0�n(R
0; t) = 0 (2.9)

Then Eq. 2.9 is a Schr�odinger equation with the envelope function �n taking the

place of a wavefunction. The operator En replaces the crystal Hamiltonian Ho.

If the energy dispersion relation En(k) is known, the kinetic energy operator in
position representation is obtained by substituting k with �{r.

If the perturbing potential is not very strong and does not vary rapidly

in time, V is vanishingly small for n 6= n0 and a single-band equation results:

X
R0

EnR0�R�n(R
0; t) +

X
R0

VnnRR0�n(R
0; t) = {�h

@�n(R; t)

@t
(2.10)

For electron transport in devices based on the InxAl1�xAs/InyGa1�yAs hetero-

junctions, the single-band equation appears to be satisfactory. However, in the

study of hole transport or in interband tunneling devices such as those based

on the InAs/GaSb/AlSb material system (Collins et al., 1991), interband cou-

pling plays a major role and a multiband treatment of quantum transport is

necessary (Ting et al., 1992).

If the potential is also not rapidly varying in space, then

VRR0 = v(R)�RR0 (2.11)

and we obtain the single-band e�ective mass equation

H� = [E(�{r) + v(z)] � = {�h
@�

@t
(2.12)

This is a very practical approximation since the Wannier functions are no longer

required.



10

n=0, R

n=1, R

n'=1, R'

n'=0, R'

Figure 2.1: Matrix elements Vnn0RR0 for a double barrier quantum well potential
with 1.7nm wide barriers and a 5nm well.

The validity of the approximations made here can be evaluated using

a Kronig-Penney model for which explicit Wannier functions have been con-

structed by Pedersen et al. (1991). The aim here is only to obtain a feel for

the approximations. To this end, the Wannier functions

an(z) =
(�1)np

�
cos

"
(2n+ 1)�z

2�

#
sin(�z=2�)

�z=2�

in the \free-electron" limit are assumed (Ziman, 1972; Pedersen et al., 1991) for

a lattice with spacing � and Brillouin zone [��=�; �=�]. The matrix elements
Vnn0RR0 including only the �rst two bands are shown in Fig. 2.1. The interband

terms are less than 15% in strength compared to the intraband terms. The
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Figure 2.2: Comparison of V00RR to v(z)z=R� for double barrier quantum well
potential with 1.7nm wide barriers and a 5nm well.

approximation that V is diagonal in the lattice site index becomes poor with

increasing band index because the Wannier functions for the higher bands are

less localized. The diagonal elements VRR for n=0 are compared to a double

barrier potential in Fig. 2.2. If the Wannier functions are taken to be delta

functions (�(z�R�)), then the matrix elements V are diagonal in the position

representation.

The simplest quantum mechanical treatment of electron motion is based

on a single band e�ective-mass Hamiltonian:

H = � �h2

2m�

@2

@z2
+ vh(z) + vs(z) (2.13)

where vh is the Hartree potential and is the average e�ect on the motion of an

electron due to the many other electrons and can be obtained from Poisson's

equation. The abrupt change in the local band-edge energy across heterojunc-
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tions is accounted for by vs. In the description of devices such as GaAs/AlAs

resonant-tunneling diodes where the e�ective mass in AlAs (0:15mo) is very

di�erent from that in GaAs (0:067mo), it is necessary to include the spatial

dependence of e�ective-mass. Regardless of the fact that an energy band is

ill-de�ned in the absence of translational symmetry, En(�{r) in Eq. 2.12 can

be replaced En(�{r; z) (a related notion is the Short-Time Fourier Transform

(STFT) (Rioul & Vetterli, 1991) used to represent non-stationary signals).

Because ẑ and k̂ do not commute, the kinetic energy operator corresponding

to En(z; k) must be constructed by assuming a correspondence rule. Several

forms for the Hamiltonian have been proposed (Zhu & Kroemer, 1983; Morrow

& Brownstein, 1984; Einevoll et al., 1990; von Roos, 1983), the most favored

being the \minimal Hermitian form,"

H = ��h
2

2

@

@z

1

m�(z)

@

@z
+ v(z) (2.14)

An interesting correspondence rule is the Weyl transform (Groot & Sut-

torp, 1972; Balescu, 1973; Leaf, 1968). The Weyl prescription for a parabolic

energy band in the presence of a spatially varying e�ective-mass is

H = ��h
2

8

"
1

m�(z)

@2

@x2
+ 2

@

@z

1

m�(z)

@

@z
+

@2

@z2
1

m�(z)

#
+ v(z) (2.15)

It should be mentioned that the correspondence rule is only a postulate, and

there is no point in trying to prove a particular rule. The results depend only

weakly on the correspondence rule, as shown in 2.3, where the conduction

curves of a typical resonant-tunneling diode obtained using models based on

Eqs. 2.14 and 2.15 are compared. Nevertheless, it is important to consistently

use the correspondence rule. For example, as discussed in the next chapter,

since the Wigner function is the Weyl transform of the density matrix, Eq. 2.15

should be used in obtaining the Wigner equation of motion.
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Figure 2.3: Self-consistently calculated conduction curves of a double barrier
diode with asymmetric anode and cathode spacers. Under forward bias, the
cathode spacer is 25nm lightly doped GaAs, and under reverse bias it is 5nm
lightly doped GaAs. Results obtained using the \minimum Hermitian" Hamil-
tonian (dashed line) and the Weyl transform Hamiltonian (solid line) are not
very di�erent.
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2.2 The Schr�odinger equation on a discrete lattice

The common approach to a numerical solution of the Schr�odinger equation

proceeds by dividing the simulation domain into several regions. Using appro-

priate matching conditions for the envelope function at the interfaces between

the di�erent regions, transfer matrices are constructed (Ricco & Azbel, 1989;

P�otz, 1989; Ohnishi et al., 1986; Cahay et al., 1987). The matching conditions

follow directly from the form of the Hamiltonian. For example, the Hamilto-

nian 2.14 implies the continuity of � and � 0=m� across an interface. Given the

boundary conditions, the transfer matrices for each mesh interval are cascaded

to obtain the solution everywhere. This technique is numerically unstable when

there are large regions of the device where the wavefunction is evanescent (Ting

et al., 1992). Further, the matching conditions across interfaces are not easy

to obtain for more complicated Hamiltonians.

A more suitable approach to modeling semiconductor devices is based

on the tight-binding energy band. The tight-binding approach results in a

set of linear algebraic equations for the envelope function at the lattice sites.

The resulting problem is very similar to that obtained by �nite-di�erencing

the continuum Schr�odinger equation. The Schr�odinger equation on a tight-

binding or �nite-di�erence basis (Frensley, 1990), in conjunction with quantum

transmitting boundary conditions (Lent & Kirkner, 1990) leads to a stable and

more realistic numerical model.

Consider a position-independent tight-binding energy band in which

only nearest neighbor interactions are assumed (Feynman et al., 1965)

E(k) = �h2

m��2
[1� cos(k�)]

Compared to a parabolic energy band that extends to in�nity, the tight-binding

result is more representative of the nature of energy bands in a semiconductor.
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The energy band has the following Fourier expansion

E(k) =X
R

EnRe{kR =
�h2

2m��2

h
�e�{k� + 2� e{k�

i

Assuming that Eq. 2.11 holds, in steady state Eq. 2.7 becomes

� �h2

2m�

 
�j�1 � 2�j + �j+1

�2

!
+ vj�j = E�j (2.16)

which is just the second-order �nite-di�erence approximation to Eq. 2.13. The

�nite-di�erence formulation to Eq. 2.13 is the exact equation of motion for a

nearest-neighbor tight-binding energy band. This relation will be exploited in

obtaining the Schr�odinger equation when the bandstructure is spatially varying.

To obtain the e�ective mass equation when the bandstructure is spa-

tially varying requires the evaluation of the Hamiltonian matrix elements of

the kinetic energy operator in a basis of generalized Wannier functions (GWF)

(Roblin & Muller, 1985; Roblin, 1988). Away from a heterojunction, the GWFs

exponentially approach the bulk Wannier functions and the matrix elements

can be evaluated easily. Near the heterojunction, however, it is di�cult to eval-

uate the GWFs. Having recognized the connection between the e�ective-mass

equations in the tight-binding and �nite-di�erence bases, it is compelling to

�nite-di�erence Eq. 2.15 to obtain the matrix elements. On a uniform spatial

mesh in the simulation region, the most consistent �nite-di�erence approxima-

tion is as follows:

i+1X
j=i�1

Hij�j = E�i

Hii�1 = � 1

4�2

 
1

m�
i

+
1

m�
i�1

!

Hii =
1

4�2

 
1

2m�
i�1

+
3

m�
i

+
1

2m�
i+1

!
+ vi

Hii+1 = � 1

4�2

 
1

m�
i

+
1

m�
i+1

!
(2.17)
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to O(�2). Adjacent to a heterojunction, the diagonal elements obtained us-

ing the �nite-di�erence formulation are weighted averages of the bulk diagonal

elements. Two lattice constants away from a heterojunction, the diagonal ele-

ments are the bulk values. Examining Fig. 2.2, the explicit GWFs will probably

yield a smoother transition across the heterojunction. If the \minimal Hermi-

tian" Hamiltonian is assumed, the diagonal elements Hii become (Frensley,

1990)

Hii =
1

4�2

 
1

m�
i�1

+
2

m�
i

+
1

m�
i+1

!
+ vj

If the connection to the �nite-di�erence formulation is ignored, the best

that can be done in the absence of explicit GWFs is to evaluate the diagonal

matrix elements on either side of the heterojunction using the corresponding

bulk Wannier functions. This gives

Hii =
1

m�
i�

2
+ vj

The non-diagonal elements near the interface remain to be determined. Several

approaches have been suggested. For an interface between lattice cites i and

i+ 1, Zhu and Kroemer (1983) suggest

Hii+1 = � 1

2�2

 
1

m�
im

�
i+1

!1=2

whereas Bastard (1981) suggests

Hii+1 = � 1

4�2

 
1

m�
i

+
1

m�
i+1

!

identical to the result of the �nite-di�erence formulation. In AlAs/GaAs het-

erostructures, the two approaches di�er by less than 10%.

2.2.1 Boundary conditions

The set of equations 2.17 can be solved after specifying boundary conditions

on �. The quantum transmitting boundary method (Lent & Kirkner, 1990)
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is adopted here. The general solution to Schr�odinger's equation outside the

simulation domain [0; L], where the potential is a constant, is

�j =

(
A1

j�1
1 +B1

1�j
1 for j � 1

AN
N�j
N +BN

j�N
N for j � N

(2.18)

where N is the number of mesh nodes in [0; L]. A1 and AN are the amplitudes

of the incoming wave components and B1 and BN are those of outgoing wave

components at the left and right boundaries respectively.  is the propagation

factor e{k�. Introducing additional mesh points, j = 0 and j = N + 1, the

solutions at the boundaries are:

�0 = A1
�1
1 +B11

�1 = A1 +B1

�N = AN +BN

�N+1 = AN
�1
N +BNN (2.19)

Eliminating B1 and BN we get

�0 � �11�
�1
1 � 1

� = A1

�N+1 � �NN�
�1
N � N

� = AN (2.20)

These two equations are added to the set 2.17. To simulate electrons injected

into the device from the contacts, set A1 = 1; AN = 0 or A1 = 0; AN = 1 for

plane waves incident from the left or right boundaries respectively. 1 and N

are obtained by writing Schr�odinger's equation at the boundary

E = H10�0 +H11�1 +H12�2

E = HNN�1�N�1 +HNN�N +HNN+1�NN+1 (2.21)

which, for the left boundary, can be rewritten as"
0 1

�H�1
12 H10 �H�1

12 (H22 � E)
# "

�0
�1

#
=

"
�1
�2

#
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In regions of constant potential, the Wannier (or tight-binding) coe�cients

satisfy the relation �j+1 = 1�j and we have the following eigenvalue problem

(Ting et al., 1992)

"
0 1

�H�1
12 H10 �H�1

12 (H22 � E)
# "

�0
�1

#
= 1

"
�0
�1

#
(2.22)

Therefore, at the two boundaries, the following quadratic equations must be

solved

E = H11 +H12

�
1 + �1

1

�
E = HNN +HNN+1

�
N + �1

N

�
(2.23)

The incoming wave components are described by the solutions of the quadratic

equations in 2.23 for which =() � 0 and jj � 1. Equation 2.22 can be

extended to treat more than nearest-neighbor interactions.

2.2.2 Resonances

Fundamental to the understanding of resonant-tunneling structures is their

transmission spectrum. Peaks in the transmission probability are associated

with quasi-bound states in the structure. Also important are the resonance

widths which are directly related to the quasibound-state lifetimes which inu-

ence the high-frequency characteristics (Brown et al., 1989; Bahder et al., 1987).

A study of the resonances in a heterostructure thus reveals some of its funda-

mental properties. Associated with the Schr�odinger equation (augmented with

the boundary conditions) is a nonlinear eigenvalue problem (Frensley, 1991):

2
6666666664

�1 �1
H10 H11 � E H12

H21 H22 � E H23

. . . . . . . . .

HNN�1 HNN � E HNN+1

�n �n

3
7777777775

2
6666666664

�0
�1
�2
...
�N
�N+1

3
7777777775

= 0
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where � and � depend on energy and are due to the boundary conditions.

The eigenspectrum is complex as a consequence of the transmitting boundary

conditions. The eigenvalues can be written as E = En�{�n, where En is the n
th

quasibound level and 2�n the corresponding resonance width. The resonance

width is related to the quasibound-state lifetimes (or escape time) through the

uncertainty principle � = �h=�, i.e., in the absence of any incoming waves, the

wave function corresponding to a quasi-bound state decays with time constant

�h=�. For a bound state, the resonance width is zero, the electron being bound

by the potential. In the Breit-Wigner formalism, the quasibound states have

a Lorentzian line shape T (E) = �2=[(E � En)
2 + �2]. Therefore a search for

the poles of the transmission amplitude has been implemented to isolate the

resonances E � {�. Quadratic interpolation and Brent's method (Press et al.,

1992) is used, �rst to �nd the peak transmission in real energy En and then to

isolate the singularity at E � {�. In Fig. 2.4 the variation of �0 with barrier

width is shown for a typical AlAs/GaAs double barrier quantum well structure.

The position of the resonance E0 is insensitive to the variation in barrier width.

2.2.3 Electron density

The electron density in the device is assumed to be comprised of independent

contributions due to each contact. It is assumed that the electrons occupy

the scattering states incident from each contact with a probability given by

the Fermi-Dirac distribution at the respective contacts, and that no transitions

between states occur in the interior of the device. The density matrix describing

the state of the mixed quantum system is (Frensley, 1990; Cahay et al., 1987)

�(z; z0) =
Z 1

vl

dE
2��hsl(E)g(E � �l)�

l!r(z; E)��l!r(z0; E)

+
Z 1

vr

dE
2��hsr(E)g(E � �r)�

r!l(z; E)��r!l(z0; E) (2.24)



20

1 2 3 4 5 6

R
es

on
an

ce
 W

id
th

 (
eV

)

Barrier Width (nm)

m*
B=0.067m0

m*
B=0.15m0

10-2

10-10

10-4

10-6

10-8
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calculation.
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where vl;r are the asymptotic potentials to the left and right, and sl;r is the ve-

locity of an electron of energy E at the respective boundary. g is the Fermi-Dirac
distribution function integrated over the transverse momenta and evaluated at

the device boundaries:

g(E) = m�kBT

��h2
ln

 
1 + e

� E
kBT

!
(2.25)

The chemical potentials in the left and right boundaries �l;r are evaluated so

that the boundary regions are charge-neutral. The superscript on the wave

function � indicates whether it is a left or right incident scattering state. The

electron density n(z) is the diagonal element of the density matrix �(z; z). It is

appealing to consider j�(z)j2 as a modi�ed density of states in the device. In a

device, the modi�ed density of states is a function of position and can be very

di�erent from that implied by the band structure alone.

2.2.4 Current density

The expression for the electron current carried by a solution �j of the e�ective-

mass equation can be obtained by writing a continuity equation for ���. First

we write the time-dependent e�ective-mass equation and its complex conjugate

on the discrete lattice:

{�h
@�j

@t
= Hjj�1�j�1 +Hjj�j +Hjj+1�j+1

�{�h@�
�
j

@t
= Hjj�1�

�
j�1 +Hjj�

�
j +Hjj+1�

�
j+1 (2.26)

Multiplying the �rst equation by ��j and the second by ��j and adding the

resulting equations we get

@��j �j

@t
= �2

�h

h
Hjj+1=(�j��j+1)�Hjj�1=(�j�1�

�
j )
i

(2.27)

We can now de�ne Jj+1=2, current density carried by � in the interval between

nodes j and j + 1:

Jj+1=2 =
2q�

�h
Hjj+1=(�j��j+1) (2.28)
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The continuity equation for the probability density becomes:

@��j �j

@t
= �Jj+1=2 � Jj�1=2

q�
(2.29)

The expression for current density is intimately related to the element Hjj+1

that couples the lattice-cites j and j+1. The expression for current density can

be easily veri�ed in the absence of any external potential and e�ective-mass

variations. Under steady state condition we have:

Jj+1=2 =
2q�

�h

�h2

2m��2
=
�
e�{kj�e{k(j+1)�

�

=
�hq

m�

sin(k�)

�
(2.30)

independent of position. In the limit � ! 0, Jj+1=2 = �hqk=m�, an expected

result.

The total current density due to contributions from the di�erent scat-

tering states in the system can be obtained as:

Jj+1=2 = q
Z 1

vl

dE
2��hsl(E)g(E � �l)J

l!r
j+1=2(E)

� q
Z 1

vr

dE
2��hsr(E)g(E � �r)J

r!l
j+1=2(E) (2.31)

In steady state, an equivalent expression for current across the device,

obtained by evaluating the above expression at the device boundaries, is

J =
q

2��h

�Z 1

vl

dEg(E � �l)T
l!r(E)�

Z 1

vl

dEg(E � �r)T
r!l(E)

�
(2.32)

where

T l!r =
sin(kr�)

sin(kl�)
B2
N

T r!l =
sin(kl�)

sin(kr�)
B2

1 (2.33)

are the probabilities of transmission of electron waves incident from the left

and right respectively. kl and kr are the electron wave-vectors at the left and
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right boundaries respectively. BN and B1 are obtained by eliminating A1 and

AN from 2.19. Eq. 2.32 is just the Tsu-Esaki formula for current adapted to

the present problem.

2.2.5 Self-consistent potential

The self-consistent potential is obtained by iteratively solving the Schr�odinger

and Poisson equations until a simultaneous solution is obtained. N�aively solving

Poisson's equation

d

dz
�(z)

d vk+1
h (z)

dz
= q2

h
N+

D (z)� nk(z)
i

(2.34)

at the (k + 1)st iteration will not guarantee convergence if the initial poten-

tial and charge distribution are far from being self-consistent. If global charge

neutrality is not satis�ed at the kth iteration, unphysically high electric �elds

can result at the device boundaries. This can lead to divergence of the poten-

tial as the iteration proceeds. To stably approach the self-consistent solution,

the electron concentration in Poisson's equation at the (k + 1)st step must be

modi�ed so that large changes vk+1
h � vkh are damped. To this end we de�ne a

local chemical potential

�k+1(z) = vkh(z) + kBT ln
nk(z)

Nc

(2.35)

where Nc is a scaling factor which appears only temporarily in the calculation.

Assuming Boltzmann statistics, we estimate the electron density

nk+1(z) = Nce
�k+1(z)�vk+1

h
(z)

kBT

= nk(z)e
vk
h
(z)�vk+1

h
(z)

kBT (2.36)

Using 2.36 we get the following non-linear Poisson equation (Venturi, 1989)

d

dz
�(z)

d vk+1
h (z)

dz
= q2

2
4N+

D (z)� nk(z)e
vk
h
(z)�vk+1

h
(z)

kBT

3
5 (2.37)
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In an iterative scheme based on Eq. 2.37, changes in the potential between

successive iterations are damped out. It is clear that the self-consistent solu-

tion satis�es Poisson's equation. Equation 2.37 can be solved by writing the

equation for the di�erence �vp+1 = vk+1;p+1
h �vk+1;p

h , and using Newton iteration

d

dz
�
d�vp+1

dz
� q2

kBT
nke

vk
h
�v

k+1;p

h

kBT �vp+1 = q2

2
4N+

D � nke
vk
h
�v

k+1;p

h

kBT

3
5

� d

dz
�
dv

k+1;p
h

dz
(2.38)

along with the condition �v = 0 at the left and right boundaries. Finite-

di�erencing Eq. 2.38 leads to a tri-diagonal system of equations

aii�1�v
p+1
i�1 + aii�v

p+1
i + aii+1�v

p+1
i+1 = ri (2.39)

where

ri = 2�2

2
4N+

D � nki e

vk
h;i
�v

k+1;p

h;i

kBT

3
5

�
h
aii�1v

k+1;p
h;i�1 + aiiv

k+1;p
h;i + aii+1v

k+1;p
h;i

i

aii = ��i�1 � 2�i � �i+1 � 2�2

kBT
nki e

vk
h;i
�v

k+1;p

h;i

kBT

aii�1 = ai�1i = �i + �i�1 (2.40)

The boundary conditions are �v1 = �vN = 0 at the �rst and last node of the

spatial mesh.

2.3 ��X bandstructure

There has been much interest in understanding the e�ect of the X-valley in

the conduction of electrons through AlAs barriers. Clearly, if �GaAs electrons

couple signi�cantly to the XAlAs states, the model discussed so far is not valid.

Several experimental studies have indicated the importance of ��X transport

(Beresford et al., 1989; Bonnefoi et al., 1987; Feldman et al., 1990; Foster
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et al., 1989; Mendez et al., 1987; Kyono et al., 1989). Models capable of

comprehending ��X transport include the work of Marsh (1987), Ting et al.

(1992) and Chiang and Chang (1993).

The model presented here can be extended to include ��X transport

by expanding the bandstructure in the ��X direction into its Fourier series

E(k) =
1X
n=1

4�h2

n2m�
na

2

"
1� cos(

nka

2
)

#
jkj � 2�

a
(2.41)

where a = 5:6533�A in GaAs and the Brillouin zone is jkj � 2�=a. The energy

band has the following Fourier expansion

E(k) =X
R

ERe{kR =
1X
n=1

2�h2

n2m�
na

2

h
�e�{nka=2 + 2� e{nka=2

i

First consider a spatially uniform energy band. Using the Fourier com-

ponents of the band structure in Eq. 2.7, we get the Schr�odinger equation

�
1X
n=1

�h2

2m�
n

 
�j�n � 2�j + �j+n

(na=2)2

!
+ vj�j = E�j (2.42)

The boundary conditions are obtained by a generalization of the treatment in

section 2.2.1 (Ting et al., 1992; Chiang & Chang, 1993).

Alternatively, a simpler scheme is obtained by assuming only nearest-

neighbor interactions in the layer adjacent to the boundaries. In a transition

region that is at least as long as the interaction range (speci�ed by the number

of Fourier components included), with every lattice site away from the bound-

ary, the interaction range can be increased until the desired number of Fourier

components is included. Outside this transition region, in the interior of the

device, the full � � X bandstructure can be included. To illustrate the ap-

proach, the matrix equation for two (n = 1; 2) Fourier components is given

as2
6664
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where the matrix elements Hij are obtained from Eq. 2.42. In this example,

nearest-neighbor interaction is assumed in one layer adjacent to the boundary.

For the case of spatially varying e�ective mass, Eq. 2.17 can be generalized to

include n Fourier components of the bandstructure:

i+nX
j=i�n

Hij�j = E�i

Hii�m = � 1

m2a2

 
1

m�
m;i

+
1

m�
m;i�m

!

Hii =
m=nX
m=1

1

m2a2

 
1

2m�
m;i�m

+
3

m�
m;i

+
1

2m�
m;i+m

!
+ vi

Hii+m = � 1

m2a2

 
1

m�
m;i

+
1

m�
m;i+m

!
(2.43)

where m�
m;i refers to the e�ective-mass in the i

th layer corresponding to the mth

Fourier component. The current density Jj+1=2 is now de�ned as

Jj+1=2 =
qa

�h

m=nX
m=1

Hjj+m=(�j��j+m) (2.44)

Of course Eq. 2.32 can still be used in the steady state since the bandstruc-

ture in the contact regions is determined by nearest-neighbor interactions. The

� �X coupling manifests itself by modifying the transmission spectrum. Im-

plementation of a program incorporating the full ��X bandstructure requires

the inclusion of the additional matrix elements into the existing code, and call-

ing a band diagonal solver instead of a tridiagonal solver. This is currently

underway.

2.4 Resonant-tunneling diodes

Consider a resonant-tunneling diode consisting of two 17�A AlAs barriers sand-

wiching a 50�A wide quantum well. In a typical diode, on either side of the tun-

neling structure is a lightly doped spacer. Here we consider a three step spacer

with 50�A lightly doped GaAs closest to the barriers, 100�A n-type (5�1016cm�3)
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Figure 2.5: Room temperature experimental and calculated J � V curve of a
symmetric AlAs/GaAs double barrier diode.

GaAs, 100�A n-type (6�1017cm�3) GaAs. The contact regions are heavily doped

(4� 1018cm�3) GaAs.

The calculated self-consistent conduction (J � V ) curve is shown in

Fig. 2.5. Also shown is the experimental J � V curve at 300K. While the

agreement between the peak current densities is good, the valley current is

grossly underestimated by the model. This is partly due to the fact that pro-

cesses such as electron-phonon scattering are ignored in the model, and the

nearest-neighbor treatment ignores e�ects such as � � X tunneling. A more

dramatic disagreement with experiment is the signi�cant hysteresis in the cal-

culated J � V curve. That the Schr�odinger model predicts hysteresis can be

understood by considering the positions of the resonant levels relative to the

energy of the virtual cathode. When the resonant level is above the virtual

cathode, the resonant transmission is high and the current increases with in-
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Figure 2.6: Cathode of the resonant-tunneling diode for an applied bias of
0.4508V in the high current state. Shown are the self-consistent potential and
the corresponding transmission probability. In the high-current state the lowest
resonance is above the virtual cathode potential.

creasing bias. Near the peak, however, two self-consistent solutions exist at a

given voltage. In the high current state the resonant level is above the virtual

cathode as shown in Fig. 2.6. In the low current state, the lowest resonant level

falls below the virtual cathode. Once this happens, the coupling between the

triangular well formed in the spacer layer and the main quantum well splits

the resonance in two, both with severely degraded peak transmission. This is

shown in Fig. 2.7.

The e�ect of the spacer layer width on the shape of the J�V curve near

the peak was illustrated in Fig. 2.3. The spacer layers in the simulated structure
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are asymmetric with the cathode spacer being thicker (250�A) in forward bias

than in the reverse bias when it is only 50�A wide. While the peak is well

rounded in reverse bias, for reasons already described, there is considerable

hysteresis in forward bias. Although not clear from the �gure, due to the

higher potential barrier in the thicker spacer, the valley current in forward bias

is less than half its value in reverse bias. Experimentally, resonant-tunneling

diodes that incorporate about 200 � 300�A thick, lightly doped spacers have

higher peak-to-valley ratios compared to diodes without spacer layers (Huang

et al., 1987; Tsao, 1993; Reddy, 1994).

The above discussion is relevant to the design of resonant-tunneling

diodes as high power sources. Increasing the width of the anode-side spacer

in the resonant tunneling diode, as in the quantum injection transit (QWITT)

diode (Kesan et al., 1988), increases the negative di�erential resistance (NDR)

compared to that obtained from a bare resonant tunneling diode. However,

if the intrinsic diode does not exhibit NDR, the drift region serves no pur-

pose. It will only increase hysteresis. For application in high power oscillators,

it is therefore necessary to design structures that do not exhibit hysteresis.

Clearly, the Schr�odinger model appears inadequate for the purpose of design-

ing QWITTs. In spite of this, with the hope that the model at least predicted

trends, di�erent spacer layer designs were studied to �nd one for which the

model would not predict such a dramatic hysteresis. For example, from Fig. 2.3

it is clear that shortening the spacer layer e�ectively removes, or reduces the

hysteresis. Within the scope of the Schr�odinger model, investigating an unusual

low-high-low doping pro�le in the spacer led to an intriguing memory switching

phenomenon that has also been experimentally observed. This phenomenon is

discussed in Chapter 5.
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2.5 Summary

Exploiting the connection of the tight-binding approach to the �nite-di�erence

formulation, an e�ective-mass equation for the case of position-dependent band-

structure has been presented. A new Hamiltonian for position dependent

parabolic energy bands, based on the Weyl correspondence rule, was �nite-

di�erenced to yield the e�ective-mass equation for a spatially varying tight-

binding energy band. It was shown that the form of the current density follows

uniquely from the speci�cation of the matrix elements of the Hamiltonian. The

expression for the current density reduces to the conventional Tsu-Esaki for-

mula in steady state. The treatment of the boundary conditions followed the

work of Frensley (1991) and (Lent & Kirkner, 1990). The formulation has been

been extended to include the full ��X conduction band edge in the position

representation.

While the e�ective-mass model is extremely useful in evaluating elec-

tronic properties related to resonant states in heterostructures, it precludes the

treatment of important e�ects such as electron-phonon scattering. Electron-

phonon interaction plays a very important role in semiclassical devices, and can

also be important in quantum devices operating at room-temperature. This is

clearly true when the region through which transport is quantum mechanical

is small, the rest of the device being essentially semiclassical. An example is

the QWITT diode (Kesan et al., 1988). Since the Schr�odinger model is very

di�erent, in spirit, from traditional transport models such as those based on

the Boltzmann equation, it is di�cult to analyze such devices. For example,

the Schr�odinger model grossly underestimates the electron concentration in the

drift region of QWITT diodes, thus greatly underestimating the space-charge

resistance. This leads to the prediction of unphysically long optimum drift

lengths.

Another problem with the Schr�odinger equation is the di�culties it
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presents in studying time-dependent phenomena. While the evolution of a

single state can be simulated (Hellums & Frensley, 1994), the evolution of a

system characterized by resonances requires that the initial state of the system

must include an in�nite basis of wavefunctions. Therefore, approaches based

on individual wavefunctions must be abandoned, and a more general quantum

kinetic approach, like the Boltzmann transport theory, be taken.

The need is for a model that can treat both quantum interference and

electron-phonon scattering. Also the model should enable straightforward time-

dependent simulations. Further, it is highly desirable that the model should

be similar in spirit (or form) to the Boltzmann transport model. An approach

that yields such a transport model is a�orded by the Weyl transform and the

associated Wigner function. A quantum transport model based on the Wigner

function is presented in the next chapter.


