
Chapter 3

Wigner-Poisson Model of Quantum Transport

A description of quantum-transport in phase-space that is analogous to that of

semi-classical transport is highly desirable. At �rst sight it may appear that

de�ning a quantum-mechanical distribution function in phase-space is not pos-

sible because of the Heisenberg uncertainty principle. However, useful phase-

space descriptions that do not violate the uncertainty relation can be developed.

The starting point is to de�ne a correspondence rule that associates an ordi-

nary function with each quantum operator and vice-versa. Several phase-space

descriptions are possible depending on the choice of the correspondence rule.

Here we will use the Weyl correspondence rule. The Weyl transform of the

density matrix is the Wigner function and it describes the state of the system

in the quantum mechanical phase-space.

We follow Balescu (1973) in the discussion of the Weyl transform and

the Wigner function. A discussion of the development of a quantum kinetic

theory being beyond the scope of this work, the starting point is the single-

particle reduced density matrix. It is shown that the Weyl transform allows

quantum mechanical averages to be calculated just as in semiclassical transport,

the Wigner function taking the place of the distribution function. This is an

important reason for using the Wigner formulation of quantum mechanics.

The equation of motion of the Wigner function is derived by considering the

Weyl transform of the von Neumann equation of motion. Finally a relaxation

time model is used to obtain a quantum kinetic equation. This is a closed
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equation for the kinetic part of the one-particle reduced Wigner function, just

as the Boltzmann equation describes the kinetic part of the classical distribution

function (see, for example, (Balescu, 1973) for a discussion of kinetic equations).

After a general discussion of the Wigner transport equation, it is ap-

plied to heterostructure device simulation. In the past, Wigner function simu-

lations have been restricted by the assumption of a spatially uniform parabolic

energy band. Only recently have there been attempts to incorporate position-

dependent energy bands into the Wigner transport simulation of heterostruc-

ture devices (Miller & Neikirk, 1991; Tsuchiya et al., 1991). It is shown that the

equation derived by Tsuchiya et al. (1991) for transport in a position-dependent

parabolic energy band is inconsistent with the Weyl transform. The equation

of Miller and Neikirk (1991) does not satisfy current continuity. We present

the equation of motion in a parabolic energy band that is consistent with the

Weyl transform and also satis�es current continuity.

In this work the real bandstructure is expanded into its Fourier compo-

nents and incorporated into the Wigner transport equation (the signi�cance of

the Fourier components of the bandstructure has been discussed in the previous

chapter). In addition to allowing the incorporation of general energy bands into

the transport equation, the approach taken here leads to a consistent discrete

numerical model.

3.1 The Weyl transformation and the Wigner function

The average of a physical quantity corresponding to the operator b̂ can be

obtained as

hbi =
Z
dz hzj�̂b̂jzi (3.1)

where �̂ is the density matrix describing the state of the mixed quantum system

and the position representation is used. The goal is to de�ne a one-particle

distribution function in quantum phase-space so that the calculation of averages
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can be converted to a form that is analogous to the classical prescription. To

this end, the quantum operator b̂ is written as a Fourier transform (Balescu,

1973; Groot & Suttorp, 1972; Leaf, 1968):

b̂ =
Z
du dv �(u; v)e{(uẑ+vk̂) (3.2)

ẑ and k̂ are the position and momentum operators respectively. Since b̂ is

Hermitian, we have that �(�u;�v) = ��(u; v). The Weyl rule states that asso-

ciated with b̂ is the Weyl transform b(z; k) also written as a Fourier transform:

b(z; k) =
Z
du dv �(u; v)e{(uz+vk) (3.3)

with the same function �(u; v) (Balescu, 1973). b(z; k) is not always the clas-

sical function corresponding to the observable, as originally proposed by Weyl

(Leaf, 1968). In general, the Weyl transforms b(z; k) do not obey the commu-

tative algebra of classical functions. The classical functions are obtained from

the Weyl transforms in the limit �h ! 0, the limit being taken after the Weyl

transform is expressed in terms of p = �hk. Of particular interest is the function

p2=m�(q) which is encountered in the study of heterostructure devices where

the e�ective mass is a function of position. In this case the classical function

and the Weyl transform are identical.

Invoking the Weyl correspondence rule for b̂, Eq. 3.2 becomes

hbi =
Z
du dv �(u; v)

Z
dz0 dz hzj�̂jz0ihz0je{(uẑ+vk̂)jzi (3.4)

Using k̂ = �{rz, expanding the exponential operator and performing the inte-

gration over z0 gives

hbi =
Z
du dv �(u; v)

Z
dz hzj�̂jz + vie{(z+v=2) (3.5)

The Wigner function f(q; k) is de�ned as (Groot & Suttorp, 1972)

1

2�

Z
dq dk e{(uq+vk)f(q; k) =

Z
dzhzj�̂jz + vie{u(z+v=2) (3.6)
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Substituting this into Eq. 3.5 we get a prescription for the calculation of aver-

ages in quantum mechanical phase-space:

hbi = 1

2�

Z
dq dk b(q; k)f(q; k) (3.7)

The averages of physical observables in phase-space can be calculated

in a manner analogous to that in classical mechanics. The Wigner function

f(q; k) plays the role of the distribution function in classical transport, and is

obtained from Eq. 3.6 by taking the inverse Fourier transform

f(q; k) =
Z
dv e�{kvh q � v=2j�̂jq + v=2i (3.8)

Equation 3.8 is another version of the Weyl transform and states that the

Wigner function is obtained from the density matrix hz0j�̂jzi by making the

coordinate transformation

q =
1

2
(z + z0)

v = z � z0 (3.9)

and taking the Fourier transform with respect to the relative coordinate v.

Although the Wigner function enters the calculation of averages as if it were

a probability density, it cannot be interpreted as one because it is not always

positive.

The Wigner function does not violate the uncertainty principle. How-

ever the uncertainty principle does impose restrictions on the Wigner function.

This can be seen easily in the case of a system in a pure state where

�̂ = j ih j (3.10)

From Schwarz's inequality and using 3.10 in 3.8 we get

jf(q; k)j2 �
�Z

dvj (q � v=2)j2
� �Z

dvj (q + v=2)j2
�

(3.11)
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Since the wave functions are normalized, jf(q; k)j � 2. Also, as de�ned, f(q; k)

is normalized to unity. Therefore, the support of the Wigner function must

be �q�k � 1=2, a re
ection of the uncertainty principle (Groot & Suttorp,

1972). Therefore functions of the form �(q)�(k) which imply that the system

is in state (q; k) are not permitted. Whereas in classical mechanics, a point in

phase-space describes a state of the system, in quantum mechanics it cannot.

Hillery et al. (1984) discuss other properties that the Wigner function must

satisfy.

3.2 Equation of motion of the Wigner function

The equation that describes the time evolution of the Wigner function is ob-

tained by considering the time dependence of the average of an observable in

the density matrix formulation:

hb(t)i = Tr[b̂�̂(t)] (3.12)

The time dependence of the density matrix is given by the von Neumann equa-

tion
@�̂

@t
= � {

�h

h
Ĥ; �̂

i
� L�̂ (3.13)

where L is the Liouville superoperator. Taking the Weyl transform of the von

Neumann equation results in the equation of motion for the Wigner function.

The Weyl transform of the commutator is

h
Ĥ; �̂

i
$2{ sin

(
1

2

 
@(h)

@q

@(f)

@k
� @(f)

@k

@(h)

@q

!)
H(q; k)f(q; k) (3.14)

where the superscripts on the partial derivatives indicate the function on which

they act. H is the Weyl transform of Ĥ and f is the Weyl transform of �̂. Here,

the Weyl transform is not the same as the corresponding classical function, the

Poisson bracket. In the limit �h! 0, however, only the �rst term in the series

expansion of the sine function will survive and we get the Poisson bracket.
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Using 3.14, the equation of motion of the Wigner function is

@f

@t
=

2

�h
sin

(
1

2

 
@(h)

@q

@(f)

@k
� @(f)

@k

@(h)

@q

!)
H(q; k)f(q; k) (3.15)

In this form the equation is of limited use because of the presence of the higher

order derivatives in the expansion of the sine function. However, it is useful

in obtaining the classical limit. In the limit �h ! 0, and assuming H(q; p) =

v(q) + p2=m�(q), we obtain the classical equation:

@f

@t
= � p

m�(q)

@f

@q
+

"
@v(q)

@q
+
p2

2

@

@q

1

m�(q)

#
@f

@p
(3.16)

regardless of how rapidly the potential or the band structure changes in position

and momentum. Also, if all derivatives of order higher than that appearing in

Eq. 3.16 vanish, there are no quantum corrections even if the limit �h! 0 is not

taken. In the presence of a rapidly varying potential v(q), or abrupt changes in

bandstructure across heterointerfaces, the following identity is extremely useful

in incorporating quantum corrections to all orders (Buot & Jensen, 1990):

sin

(
1

2

 
@(h)

@q

@(f)

@k
� @(f)

@k

@(h)

@q

!)
H(q; k)f(q; k)

� �{
8�2

Z
dk0 dq0 dv dr e�{[(k � k0)r + (q � q0)v]f(q0; k0)

�
�
H(q0 +

r

2
; k0 � v

2
)�H(q0 � r

2
; k0 +

v

2
)
�

(3.17)

We assume that only the momentum in a direction parallel to the electron

current is important, and the degrees of freedom associated with the perpen-

dicular momenta can be integrated out of the problem. This is valid only if

the Wigner function for these momenta are not coupled to the Wigner func-

tion for the parallel momenta. A magnetic �eld couples the Wigner function

in both momentum directions. Electron-phonon collisions also have a similar

e�ect. Also, to be able to integrate out the perpendicular momenta, it is nec-

essary that any variations in the bandstructure occur only in one direction in

momentum, a highly unphysical situation. While extending Eq. 3.17 to two
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dimensions in momentum (assuming radial symmetry in plane perpendicular

to current 
ow) is straightforward, the numerical evaluation of the Wigner

function in three dimensions, f(q; k?; kk), is intractable.

Dissipation in the Wigner formulation of quantum transport has been

most commonly treated using the relaxation time approach

@f

@t

����� = 1

�f

 
n(q)

neq(q)
f eq(q; k)� f(q; k)

!
(3.18)

where f eq is the equilibrium distribution function and �f is the characteris-

tic time that governs the relaxation of the distribution function. n(q) is the

electron density and neq(q) is the equilibrium electron density. The relaxation

time model used here represents collisions in which the scattering rate out of

the phase space point (q; k) is proportional to f(q; k). The scattering rate into

(q; k) is proportional to the local electron concentration n(q) and the equilib-

rium distribution f eq(q; k).

3.2.1 Parabolic energy band

To relate this work to the results of Tsuchiya et al. (1991) and Miller and

Neikirk (1991), we �rst consider a parabolic bandstructure with spatially vary-

ing e�ective-mass:

H(q; k) =
�h2k2

2m�(q)
+ v(q) (3.19)

v(q) includes, in addition to the heterostructure band-o�sets, the self-consistent

Hartree potential. The Hartree potential can be obtained from Poisson's equa-

tion for the charge distribution in the device. Substituting in the integral form

we get the equation of motion for the Wigner function in 
ux-conservative

form:

@f

@t
= ��h

�

Z
dk0 k0

@

@q
[f(q; k0)Me(q; k � k0)]

� �h

4�

Z
dk0

@2

@q2
[f(q; k0)Mo(q; k � k0)]
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+
�h

�

Z
dk0 k02f(q; k0)Mo(q; k � k0)

+
2

��h

Z
dk0 f(q; k0)V(q; k � k0) (3.20)

where

Me(q; k) =
Z
dr

cos 2k(q � r)

m�(r)

Mo(q; k) =
Z
dr

sin 2k(q � r)

m�(r)

V(q; k) =
Z
dr v(r) sin 2k(q � r) (3.21)

Writing the equation of motion in a 
ux conservative form is essential in the

subsequent development of a discrete numerical model. The result of Miller and

Neikirk (1991) is based on the discrete Weyl transform and can be obtained by

discretizing the following equation of motion

@f

@t
= ��hk

�

Z
dk0M e(q; k � k0)

@f(q; k0)

@q

� �h

4�

Z
dk0Mo(q; k � k0)

@2f(q; k0)

@q2

+
�hk2

�

Z
dk0f(q; k0)Mo(q; k � k0)

+
2

��h

Z
dk0 f(q; k0)V(q; k � k0) (3.22)

which is obtained by using instead of Eq. 3.17, the following 
ux non-conserving

form

sin

(
1

2

 
@(h)

@q

@(f)

@k
� @(f)

@k

@(h)

@q

!)
H(q; k)f(q; k)

� �{
8�2

Z
dk0 dq0 dv dr e�{[(k � k0)r + (q � q0)v]f(q0; k0)

�
�
H(q +

r

2
; k � v

2
)�H(q � r

2
; k +

v

2
)
�

(3.23)

Expanding the derivatives in q in Eq. 3.20 and using the fact thatM0e(q; k) =

2kMo andM0o(q; k) = �2kMe(q; k), it is easy to show that Eqs. 3.22 and 3.20
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are identical. However, the corresponding discrete models are very di�erent in

nature. Both equations satisfy current continuity in the continuum. However,

discretizing Eq. 3.22 yields a numerical model that does not satisfy current

continuity.

A simpler example to illustrate the point is to compare

@n

@t
=
@vn

@z

with
@n

@t
= v

@n

@z
+ n

@v

@z

which are identical (n is a density and v a z-dependent velocity) in the contin-

uum. However the �rst form leads to a 
ux conserving discrete model, while

the second does not.

Equation 3.20 is not the same as that obtained by Tsuchiya et al. (1991).

In that work, the Fourier transform was applied to the von Neumann equation

with the explicit quantum mechanical Hamiltonian

Ĥ = ��h
2

2

@

@z

1

m�(z)

@

@z
+ v(z) (3.24)

already in place. The Hamiltonian Eq. 3.24 does not lead to the equation of

motion of the Wigner function Eq. 3.20 because it is inconsistent with the Weyl

correspondence rule. It is instructive to determine the quantum-mechanical

Hamiltonian by inverting the Weyl transform. Using the Weyl transform pair

(Groot & Suttorp, 1972):

f(p)p2()1

4

h
f(q̂)p̂2 + 2p̂f(q̂)p̂+ p̂2f(q̂)

i
(3.25)

the Hamiltonian in position representation is:

Ĥ = ��h
2

8

"
1

m�(z)

@2

@x2
+ 2

@

@z

1

m�(z)

@

@z
+

@2

@z2
1

m�(z)

#
+ v(z) (3.26)
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which was discussed in the previous chapter. It is easily veri�ed that the

Hamiltonian is Hermitian as it must be. Since the de�nition of the Wigner

function is associated with the Weyl correspondence rule, Eq. 3.26 must be

used to obtain the correct equation of motion in a parabolic energy band in

the presence of non-uniform e�ective-mass. The Hamiltonian Eq. 3.26 leads to

the following von Neumann equation in position representation:

@�

@t
=

{�h

8

" 
1

m�(z)

@2

@z2
� 1

m�(z0)

@2

@z02

!
+ 2

 
@

@z

1

m�(z)

@

@z
� @

@z0
1

m�(z0)

@

@z0

!

+

 
@2

@z2
1

m�(z)
� @2

@z02
1

m�(z0)

!
� 8

�h2
[v(z)� v(z0)]

#
�(z; z0) (3.27)

Although more tedious than using Eq. 3.17, it is straightforward to show that

the procedure of (Tsuchiya et al., 1991) applied to Eq. 3.27 will lead to the

equation of motion Eq. 3.20.

While the \minimal Hermitian" Hamiltonian does lead to the equation

of motion presented by Tsuchiya et al. (1991), it is written in a very awkward

form that does not lend itself to elegant, and more importantly, accurate dis-

cretization. The discrete model derived by Tsuchiya et al. (1991) su�ers from

severe problems. Their work suggests that as the e�ective mass in the barrier

increases, the peak current increases. From the discussion in Section 2.2.2, this

result is unphysical. The error may be due to improper discretization. In Ap-

pendix A, we show how their equation can be manipulated to yield a form that

lends itself to an accurate and aesthetically pleasing numerical model. Further,

this exercise also serves the purpose of highlighting the di�erences between

their model and the one presented in this work.

3.2.2 General energy band

Equation 3.20 describes quantum transport in a model heterostructure device

where the bandstructure everywhere is parabolic. In real devices, however, the

deviation from parabolicity is signi�cant. The band structure in the � � X
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Figure 3.1: � � X pseudopotential bandstructure in GaAs (calculated by V.
Chandramouli).

direction, shown in Fig. 3.1, can be expanded into its Fourier components:

E(k) =
1X
n=1

4�h2

n2m�
na

2

"
1� cos(

nka

2
)

#
jkj � 2�

a
(3.28)

where a = 5:6533�A in GaAs and the Brillouin zone is jkj � 2�=a. The Fourier

coe�cients 1=m�
n are shown in Fig. 3.2. The signi�cance of the Fourier compo-

nents of the energy band has been discussed in the previous chapter in relation

to the e�ective-mass equation. Expanded as a Fourier series it is easy to formu-

late the tight-binding problem on a discrete lattice that results in the assumed

energy band. Here, the advantage of using a Fourier expansion of the band-

structure is that it leads to a consistent numerical quantum transport model

(Gullapalli & Neikirk, 1994), as will be described in the next chapter. In the

��X energy band, the equation of motion for the Wigner function is

@f

@t
= �

1X
n=1

4�h

n2�a2
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�
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�
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4
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�

+ f

�
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4
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�
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n

�
q � na

4
; k � k0

��

� 2
Z
BZ

dk0 f(q; k0)Mo
n(q; k � k0)

�

+
2

��h

Z
BZ

dk0 f(q; k0)V(q; k � k0) (3.29)

where

Me
n(q; k) =

Z
dr

cos 2k(q � r)

m�
n(r)

Mo
n(q; k) =

Z
dr

sin 2k(q � r)

m�
n(r)

V(q; k) =
Z
dr v(r) sin 2k(q � r) (3.30)

While the bandstructure is based on the tight-binding approach on a �nite-

di�erence mesh with spacing a=2, the equation of motion for the Wigner func-

tion must be solved on a mesh with spacing a=4. In the following discussion

we refer to the Wigner lattice as the lattice on which the Wigner equation is

solved. It is important to remember that the Wigner lattice is twice as dense

as the lattice on which the e�ective-mass equation is solved. In the numerical

model to be developed in the next chapter, this also assures that the periodicity

of the Wigner function coincides with that of the bandstructure.

The fact that the Brillouin zone is not speci�ed by the Wigner lattice

constant �, but by twice the Wigner lattice constant 2�, has not been ap-

preciated in the past. This is due to the fact that past treatment has been

based on parabolic energy bands which are not consistent with a discrete lat-

tice. This confusion led Miller (1994) to conclude that the Wigner function

midway between the mesh points were also important. This is unnecessary,
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and the confusion is elegantly resolved using the tight-binding energy band,

that is consistent with a discrete lattice, instead of using the parabolic band.

To incorporate multi-band e�ects into the Wigner transport equation, it

is necessary to start with the multi-band Hamiltonian. A general consideration

of the problem has been presented by Miller (1994) where the single band

approximation is justi�ed for the heterostructures studied in this work. In

any case, numerical simulations have not proceeded beyond the single-band

e�ective-mass approximation, even including the full ��X energy band being

computationally intractable.

� valley transport

Since the number of Fourier coe�cients required to represent the bandstructure

is large (� 10), Eq. 3.29 is highly nonlocal in position. This is in addition to

the highly nonlocal coupling in momentum due to V. Available computational
resources permit the inclusion of only the nearest and second-nearest-neighbor

coupling in position. If transport is principally in the � valley, the band-

structure is reasonably well described by the n = 4 component alone. The

bandstructure in the � valley is thus approximated:

E(k) = �h2

4m�a2
[1� cos (2ka)] jkj < �

2a
(3.31)

where m� = m�
GaAs. In the given region of the Brillouin zone, the �t is better

than the parabolic relation and is shown in Fig. 3.3. In this work we assume

that the relevant portion of the bandstructure in AlAs is also the � valley. The

heterostructure device is thus assumed to be described by

H(q; k) =
�h2

4m�(q)a2
[1� cos (2ka)] + v(q) (3.32)

where, for convenience the lattice constant a is assumed to be the same for

AlAs and GaAs. The following equation of motion is obtained:

@f

@t
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4�a2

Z
BZ

dk0 sin (2k0a) [f(q + a; k0)Me(q + a; k � k0)
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�f(q � a; k0)Me(q � a; k � k0)]

� �h

4�a2

Z
BZ

dk0 cos (2k0a) [f(q + a; k0)Mo(q + a; k � k0)

+ f(q � a; k0)Mo(q � a; k � k0)]

+
�h

2�a2

Z
BZ

dk0 f(q; k0)Mo(q; k � k0)

+
2

��h

Z
BZ

dk0 f(q; k0)V(q; k � k0) (3.33)

In the limit a ! 0 we get a parabolic energy band and Eq. 3.33 reduces to

Eq. 3.20. Since the energy band in Eq. 3.32 is based on the discrete Schr�odinger

equation in the �nite-di�erence basis, it is not surprising that the resulting

transport equation is also discrete in q, the evolution of f(q) depending only

on the nearest neighbors f(q + a) and f(q � a).

3.3 Summary

It has been shown that the Weyl transform allows quantum mechanical aver-

ages to be calculated as in semiclassical transport, the Wigner function taking

the place of the distribution function. The equation of motion of the Wigner

function has been derived by considering the Weyl transform of the von Neu-

mann equation of motion and a relaxation time model was used to obtain a

quantum kinetic equation. The appeal of the Wigner formulation is its simi-

larity to the more familiar Boltzmann transport equation. This similarity is of

importance in the study of the transition from quantum to classical behavior.

Also, the similarity in forms may lead to a generalization of powerful methods

already developed for the solution of the Boltzmann equation.

The equation of motion of the Wigner function in a parabolic energy

band, that is consistent with the Weyl transform and also satis�es current

continuity, has been discussed. The incorporation of spatially varying band

structure has also been discussed. Another issue addressed in this chapter is

that the band structure in real semiconductors is far from being a parabola that
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extends to in�nite energy. Expanding the bandstructure into its Fourier series

allows its incorporation into the Wigner transport equation in a consistent

manner.


