
Chapter 4

Numerical Aspects of Quantum Transport

Simulation using the Wigner-Poisson Model

The equations of motion of the Wigner function discussed in chapter 3 can be

compactly written as follows:

@f(q; k)

@t
= Lf(q; k) �1 < q < +1;� �

2�
� k � �

2�
(4.1)

where L is the Liouville superoperator and � is the spacing of the lattice on

which the equation is solved. In a �nite system [0; L], boundary conditions are

imposed and the equation takes the following form:

@f(q; k)

@t
= Lf(q; k) + b 0 < q < L (4.2)

where b incorporates the boundary contribution. The boundaries of the sim-

ulation domain are placed in regions far from the active region of the device

where the solution is known with a high degree of con�dence. The boundary

conditions are typically imposed a few thermal wavelengths away from the ac-

tive region of the device so that interference e�ects vanish at the boundaries.

The goal is to convert the integro-di�erential equation 4.2 into a set of lin-

ear algebraic equations and use direct methods to invert the resulting matrix

equation.

An accurate numerical model is necessary to obtain useful knowledge.

In the past, the issue of numerical stability has been considered the most im-

portant, the �delity to the physical model receiving much less attention. This
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is perhaps because the problems inherent with past approaches are not obvious

in the commonly simulated AlGaAs/GaAs heterostructures. As will be demon-

strated in this chapter, the standard upwind schemes for the drift term, chosen

from numerical stability considerations, are completely inadequate in the study

of AlAs/GaAs heterostructures. The tradeo� between numerical stability and

physical accuracy makes the discretization of the Wigner equation of motion a

major challenge. After a discussion of the inadequacy of the upwind schemes,

di�erencing schemes that greatly improve accuracy while maintaining numeri-

cal stability are presented. We present, for the �rst time, the proper numerical

treatment when the e�ective-mass changes with position in the heterostructure.

4.1 Discrete Wigner-Poisson model: general considera-

tions

The equation of motion is reduced to a set of linear algebraic equations for the

Wigner function fjn on a discrete phase-space:

fqjjqj = j�; j = 1; 2; : : : ; Nqgn
knjkn = �

2Nk�
(2n� 1�Nk);n = 1; 2; : : : ; Nk

o
Lf =

P
j0n0 Ljn;j0n0fj0n0 = �bjn (4.3)

� is the mesh spacing in position. Nq and Nk are the number of position

and momentum nodes respectively. Ljn;j0n0 is the discrete Liouville superoper-

ator. This structure for the discrete phase-space has been widely used (Buot &

Jensen, 1990; Frensley, 1990; Klukshdahl et al., 1989; Mains & Haddad, 1988).

bjn is the boundary contribution which depends on L and the bound-

ary conditions speci�ed for the Wigner function. At the boundaries of the

simulation domain, the potential is constant and the Wigner function is the

Fermi-Dirac distribution. So far, the discussion has been for transport in one

dimension. However, the momentum space is two dimensional (assuming cylin-
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drical symmetry about the direction of current 
ow). Integrating over the

transverse momenta, we get

f(0; k) =
m�(0)kBT

��h2
ln
�
1 + e

�
E(0;k)��0

kBT

�

f(L; k) =
m�(L)kBT

��h2
ln
�
1 + e

�
E(L;k)��L

kBT

�
(4.4)

As discussed in Section 3.2 the transverse degrees of freedom can be integrated

out only if the Wigner function in the longitudinal momentum is not coupled

to that in the transverse momentum.

How the boundary distribution couples into the simulation domain de-

pends on L at the boundary. Typically, ohmic contact behavior is simulated at

the boundaries. Electrons with an equilibrium distribution are injected into the

device regardless of the behavior interior of the device. The distribution of the

electrons exiting the device at the boundary is not speci�ed. If the boundaries

are far from the active region of the device, and if dissipation is included in

the contact regions, the exiting distribution will also resemble the equilibrium

form.

The choice of the points in k-space is very important. The point k = 0

cannot be included because L then becomes singular. The integrals in 3.21

can be accurately estimated using the discrete sine and cosine transforms. To

understand the k-mesh spacing, consider the discrete Wigner function

fjn =
Nk=2X

j0=�Nk=2

�j+j0;j�j0e
�2{knj0� (4.5)

and the discrete potential kernel corresponding to V(q; k � k0)

Vj;n�n0 = �=
8<
:

j+Nk=2X
j0=j�Nk=2

vj0e
�2{(j�j0)(n�n0)��k

9=
; (4.6)

which are invertible only if the Fourier completeness condition Nk��k = � is

satis�ed. This condition must also be met if the discrete transport model is to
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satisfy current continuity. In the continuum, the integral of the potential kernel

over k vanishes due to the odd symmetry. For the discrete potential kernel

to vanish after summation (i.e.,
P

n Vj;n�n0 = 0), the Fourier completeness

condition must be satis�ed (Frensley, 1990). Only then will the equation of

continuity hold in the discrete model.

An important point is that the use of the discrete Fourier transform

introduces the necessary periodicity in momentum. While the E(k) dispersion
of a free-electron is not periodic, in a crystal it is. The Wigner function, and

its equation of motion must also possess this periodicity in momentum. The

use of a discrete sine and cosine transforms assures this periodicity.

To understand the limits on the summation in Eq. 4.5, consider the

density matrix of a free electron

�j+j0;j�j0 = e�j
02=`2 `2 = �h2

2m�kBT�2 (4.7)

where T is the temperature, m� is the e�ective mass, and � is the lattice

constant. The density matrix falls o� rapidly with increasing jj 0j. At room

temperature ` � 9 in GaAs. This sets a safe choice of Nk = 6` � 54. A larger

Nk is typically used to improve the accuracy in estimating the electron den-

sity which is evaluated as the integral of the Wigner function in k-space. An

important reason for choosing a larger value for Nk is that it reduces the dissi-

pative e�ects inherent on a discrete phase-space. In the absence of any physical

dissipation, electron trajectories are reversible. However, after coarse graining,

trajectories are not reversible. This is demonstrated in Fig. 4.1. This phenom-

ena is similar to arithmetic on a �nite precision computer where reversing the

operations does not always yield the starting values.
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Figure 4.1: Trajectories on a discrete mesh are not reversible. Shown here is
a trajectory and its time-reversed pair under the in
uence of a constant force:
�h2k dk=dx = m�F . F = 1MV , Nk = 40 � = 5:6533�A and �k = �=(Nk�).
At each position the momentum is reassigned to the nearest node in k� space
given by n = int[k=�k + 1=2].
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4.2 Transport in a parabolic energy band

Before discussing the discretization of the various terms in the equation of

motion, the term

T f(q) = � �hk

m�
GaAs

@f

@q

is separated from Eq. 3.20. In the absence of any e�ective-mass variations in the

device, T f(q) is the drift term. Discretization of the drift term presents a non-

trivial problem and will be discussed separately. Ignoring the drift term for the

moment, each term in Eq. 3.20 is approximated by using centered di�erences for

the derivatives. Examining Eq. 3.33 it is clear that this is the most consistent

discretization. The integrals in momentum are evaluated by expanding the

distribution function in k-space using a delta-function basis (f(q; k) = �k�(k�
kn)fjn).

The following discrete forms for the various terms in Eq. 3.20 are ob-

tained:

1

�

Z
BZ

dk0 k0
@

@q

"
f(q; k0)

Z
dr

 
1

m�(r)
� 1

m�
GaAs

!
cos[2(k � k0)(q � r)]

#

!
NkX
n0=1

kn0

Nk

 Me
j+1n�n0fj+1n0 �Me

j�1n�n0fj�1n0

2�

!
(4.8)

1

4�

Z
BZ

dk0
@2

@q2

"
f(q; k0)

Z
dr

sin[2(k � k0)(q � r)]

m�(r)

#

!
NkX
n0=1

 Mo
j+1n�n0fj+1n0 � 2Mo

jn�n0fjn0 +Mo
j�1n�n0fj�1n0

4Nk�2

!
(4.9)

2

�

Z
BZ

dk0 f(q; k0)
Z
dr

 
v(r) +

k02

2m�(r)

!
sin[2(k � k0)(q � r)]

!
NkX
n0=1

k2n0Mo
jn�n0 + 2Vjn�n0

Nk

fjn0 (4.10)

@f

@t

�����
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n00 f

eq
jn00

� 1

!
fjn (4.11)
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The matrices Me, Mo and V are evaluated using fast sine and cosine

transforms (Gullapalli & Neikirk, 1994) with Nk chosen to be a power of 2.

Me
jn�n0 =

(�1)n0�n
2

0
@ 1

m�
j+Nk=2

+
1

m�
j�Nk=2

� 2

m�
GaAs

1
A+

 
1

m�
j

� 2

m�
GaAs

!

+
Nk=2�1X
j0=1

 
1

m�
j+j0

+
1

m�
j�j0

� 2

m�
GaAs

!
cos

"
�(n0 � n)j 0

Nk=2

#

Mo
jn�n0 =

Nk=2�1X
j0=1

 
1

m�
j+j0

� 1

m�
j�j0

!
sin

"
�(n0 � n)j 0

Nk=2

#

Vjn�n0 =
Nk=2�1X
j0=1

(vj+j0 � vj�j0) sin

"
�(n0 � n)j 0

Nk=2

#
(4.12)

The symmetry properties of Me, Mo and V greatly reduce the task of �lling

the corresponding matrices. For each j it is necessary to compute only one half

of the �rst row (n = 1; n0 = 1; 2; : : : ; Nk=2 + 1).

Summarizing, the matrix elements of the Liouville superoperator are:

Ljn;j0n0 = Tjn;j0n0 �
kn0Me

j0n�n0

Nk

 
�j0j+1 � �j0j�1

2�

!

� Mo
j0n�n0

4Nk

 
�j0j+1 � 2�j0j + �j0j�1

�2

!

+
k2n0Mo

j0n�n0 + 2Vj0n�n0
Nk

�j0j +
�j0j

�f

 
f eqP
n00 f

eq
jn00

� �n0n

!
(4.13)

4.3 Transport in a tight-binding energy band

For reasons already discussed in the last chapter, a consistent discrete model

must also assume a bandstructure that is consistent with the discrete lattice.

This is the tight-binding energy band. Solving for the bandstructure on a

lattice with spacing 2� yields the band structure

E(k) = �h2

4m��2
[1� cos (2k�)] ;

and the Wigner function must be solved on a lattice with half the spacing (�).

This ensures, correctly, that the periodicity of the discrete Wigner function is
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the same as that of the bandstructure. As in the case of the parabolic energy

band, we �rst separate the uniform e�ective-mass drift term T f(q):

T f(q) = ��h sin(2k�)
2m�

GaAs�

f(q +�; k)� f(q ��; k)

2�

Following the procedure outlined in the previous section, the discrete Liouville

superoperator for a tight binding energy band is (Gullapalli & Neikirk, 1994),

Ljn;j0n0 = Tjn;j0n0 �
sin (2kn0�)Me

j0n�n0

2Nk�

 
�j0j+1 � �j0j�1

2�

!

� cos (2kn0�)Mo
j0n�n0

4Nk

 
�j0j+1 � 2�j0j + �j0j�1

�2

!

+
(1�cos(2kn0�)

2�2 )Mo
j0n�n0 + 2Vj0n�n0
Nk

�j0j

+
�j0j

�f

 
f eqP
n00 f

eq
jn00

� �n0n

!
(4.14)

where the matricesMe,Mo and V are as in 4.12. The approach can be easily

extended to include the other Fourier components of the energy band structure.

4.4 Discretization of the drift term

The drift term in a tight-binding energy band is discrete in position, and in a

centered di�erence form. Since the tight-binding equation of motion reduces

to the equation of motion in a parabolic band in the limit � ! 0, it is clear

that in a parabolic energy band too, centered di�erencing the drift term is

most appropriate. However, the centered di�erence form for the drift term is

unsuitable for numerical simulation. An important aspect in numerical mod-

eling is stability. Consider a semiconductor device initially in steady state and

subject to some disturbance. When the disturbance is removed, the device will

return to the original steady state. The time evolution of the initial distur-

bance �f(0) is governed by the equation of motion and is generally given as

�[f ](t) = e[�]t�[f ](0) where [�] is the eigen-value spectrum of the discrete Li-

ouville superoperator. For the disturbance to decay, and the system to return
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stably to steady state, [�] must not have any positive real part. In the absence

of any collisions, if the centered di�erence form of the drift term is retained,

all eigenvalues of the Liouville superoperator have zero real part. This is due

to the Hermiticity of the Liouvillian. Due to inevitable numerical round-o�

errors, this will actually lead to exponentially growing disturbances. Even the

presence of disspative processes such as electron-phonon collisions, which serve

to damp disturbances, does not always lead to a stable numerical model (Frens-

ley, 1990). Even under steady state conditions, the boundary value problem

cannot be solved if there exists a near zero eigenvalue. Incorporation of an ar-

bitrary fraction of the spurious mode cos(j�) leads to zone-to-zone oscillations

and renders the solution meaningless.

To realize a physical model, it is necessary to incorporate some mech-

anism in the numerical model to dissipate disturbances or errors. A way out

of the di�culty is to use upwind di�erencing instead of the centered di�er-

ence. Two upwind di�erencing schemes are discussed next and their utility for

simulating the Wigner equation of motion investigated.

4.4.1 First order upwind/downwind discretization

The simplest way to obtain a stable numerical model is to use upwind di�er-

encing to approximate the drift term T f(q):

T f(q) = ��h sin(2k�)
2m��2

(
f(q +�)� f(q) for k < 0
f(q)� f(q ��) for k > 0

(4.15)

That the upwind di�erence scheme introduces dissipation and numerical sta-

bility can be understood by considering the quation of motion in the absence

of any potential:
@f

@t
= T f(q)
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Under steady state f(q+�) = f(q) = f(q��). Therefore, a perturbation �fj

at grid point j evolves according to:

@fj

@t
= ��h sin(2k�)

2m��2

(
��fj for k < 0
�fj for k > 0

The solution is

�fj(k) = e
�
�hj sin(2k�)j

2�2
qm

� t

the perturbation decaying with a time constant � = 2�2m�=�hj sin(2k�)j.

The utility of the upwind scheme for the simulation of resonant tunnel-

ing diodes is discussed next. Most commonly simulated is a Al0:3Ga0:7As/GaAs

diode, composed of 30�A AlGaAs barriers sandwiching a 50�A GaAs quantum

well. Ignoring the self-consistent potential, the applied bias is usually dropped

linearly across the double barrier quantum well structure. In this study the

contact regions are assumed to be doped n-type at 2� 1018cm�3. Room tem-

perature (300K) is assumed in all calculations.

Calculations using 4.15 result in the J�V curve shown in Fig. 4.2. Also

shown in the �gure are the curves due to Tsuchiya et al. (1991). Calculations

with the parabolic band structure also yield similar results. This is to be ex-

pected since in the energy range of interest, the tight-binding and parabolic

bands are similar. As discussed in Section 2.2.2, higher the e�ective-mass in

the barriers, the narrower the resonances. Consequently the current density de-

creases with increasing e�ective-mass in the barrier. While our model correctly

predicts this behavior, the model of Tsuchiya et al. (1991) yields the absurd

result that the peak current increases with increasing barrier e�ective-mass.

The problem with the work of Tsuchiya et al. (1991) is the rather unwieldy

form in which they write the equation of motion, which in turn encourages a

very bad numerical model. Appendix A outlines how their equation can be

rewritten in a form that a�ords accurate and elegant discretization.
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Figure 4.2: Calculated J �V curve of the AlGaAs/GaAs double barrier diode.
Collisions are ignored. Nq = 80 and Nk = 64. Solid lines are the results of this
work and the light dashed lines are due to Tsuchiya.
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Figure 4.3: Calculated J � V curve of the AlGaAs/GaAs double barrier diode
using the Wigner and Schr�odinger models.

The J � V curve predicted by the Schr�odinger and Wigner models are

compared in Fig. 4.3 where a contact doping of 4� 1018cm�3 is assumed. The

Wigner and Schr�odinger models predict similar characteristics. The Wigner

calculation however predicts lower peak currents and higher valley currents

when compared to the Schr�odinger calculation. In the absence of collisions the

two models should yield the same results since both models are based on the

e�ective-mass Hamiltonian. Comparing results obtained using the two models

can bring to light problems with Wigner function calculations that are not

obvious.

Consider next the application of 4.15 in the simulation of the more

useful AlAs/GaAs double barrier diodes. The AlAs/GaAs double barrier diode

considered here is our baseline device. The tunneling structure consists of two

17�A thick AlAs barriers sandwiching a 50�A wide GaAs quantum well. On
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Figure 4.4: Calculated J � V curve of the baseline AlAs/GaAs double bar-
rier diode under 
at-band conditions and ignoring the higher e�ective-mass in
AlAs. In the Wigner calculations collisions are ignored and Nq = 314; � = a

and Nk=128, the boundaries of the simulation being placed 150a � 900�A away
from the double barrier quantum well structure.

either side of the tunneling structure is a three step spacer layer consisting of

50�A undoped GaAs closest to the barrier, 100�A GaAs doped at 5� 1016cm�3,

and 100�A GaAs doped at 6 � 1017cm�3. Thick GaAs contact regions doped

at 4 � 1018cm�3 complete the device structure. The conduction band o�set

at the AlAs/GaAs heterojunction is taken to be 1eV , m�
GaAs = 0:067m0, and

m�
AlAs = 0:15m0.

If the requirement of self-consistency is ignored, and the applied po-

tential is dropped across the tunneling structure, the resulting J � V curve,

ignoring the position dependence of e�ective-mass, is shown in Fig. 4.4. Also

shown in the �gure are the characteristics due to the Schr�odinger model. The

limitations of �rst order upwind di�erencing are beginning to surface. The
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Figure 4.5: Calculated J � V curve of the baseline AlAs/GaAs double barrier
diode under 
at-band conditions and taking into account m�

AlAs = 0:15m0.
In the Wigner calculations collisions are ignored and Nq = 314; � = a and
Nk=128, the boundaries of the simulation being placed 150a � 900�A away
from the double barrier quantum well structure.

peak current and the resonance in the current-voltage curve are severely de-

graded. The only other simulation of high barrier height devices is due to

Mains and Haddad (1988). Their calculations, under 
atband conditions gave

peak current densities in AlAs/In0:53Ga0:47As double barrier diodes that are in

agreement with experimental values, even without the inclusion of the higher

AlAs e�ective-mass. The calculations here show that since upwind di�erenc-

ing severely degrades the peak current, which is also the e�ect of the higher

AlAs e�ective-mass, the agreement observed in the study of Mains and Haddad

(1988) is fortuitous. When the non-uniformity of the e�ective-mass is consid-

ered, the upwind di�erence scheme yields completely meaningless results as

shown in Fig. 4.5. The problem can be understood further by considering the
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Figure 4.6: The e�ect of the contact dopant density on the calculated J � V

curve of the baseline AlAs/GaAs double barrier diode under 
at-band condi-
tions and taking into account m�

AlAs = 0:15m0. Nq = 214; � = a and Nk=128,
the boundaries of the simulation being placed 100a � 600�A away from the
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atband calculation with a reduced contact doping. The result is shown in

Fig. 4.6. As the contact doping is reduced, the electron density decreases, es-

pecially at high energy. As a result, the contribution of discretization errors in

the Wigner trajectories are reduced. The situation therefore improves to some

extent. However, the dependence of the Wigner trajectories on the applied bias

is complex and the problem remains at higher applied voltages.

The possibility that the errors are due to the boundary being too close

to the active region of the device has been investigated. The simulations have

been done with increasing spacing between the boundary and the double bar-

rier structure with the spacing being as large as 1600�A. The investigations have

shown that the results are only weakly dependent on the position of the bound-
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ary, a conclusion also reached by Jensen and Buot (1990). The real problem

is the inherent 
aw in the upwind di�erencing of the drift-term which surfaces

when the barrier height is large. The stronger the barrier, the more nonlocal

in momentum is its e�ect. Errors due to upwind di�erencing the drift-term

in relatively low current carrying regions of momentum space can be strongly

coupled to high current carrying regions. While this might not lead to major

errors in the electron density, the error in the overall current can be large. In

addition, since the e�ective-mass variation is also large in AlAs/GaAs devices,

and since this term also adds non-locality in momentum space, the problem is

even worse.

A more insightful view of the problem is obtained by considering what

the upwind di�erencing implies about the bandstructure. Consider the drift

term for a spatially uniform band structure E(k)

@fjn

@t
= � 2

Nk

j+Nk=2X
j0=j�Nk=2

fj0n

NkX
n0=1

En0 sin [2�(j � j 0)(n� n0)=Nk]

This is analogous to the term due to the potential. While the potential cou-

ples di�erent momenta, the band structure couples di�erent positions. The

coe�cients of fj0n are clearly the discrete sine transform of the band structure.

For a real function, which the band structure is, the sine transform satis�es

the relation F (j � j 0) = �F �(j 0 � j). This therefore leads to a centered dif-

ference form, with the number of terms given by twice the number of Fourier

components. For the tight-binding band we have assumed, only one Fourier

component exists, and we get the the centered di�erence form fj+1n � fj�1n.

The upwind di�erence breaks this symmetry. If the coe�cients in the upwind

di�erence are taken to be the Fourier coe�cients of the bandstructure, then

the bandstructure cannot be real. The nature of the errors due to this may

depend on the bandstructure assumed, and on the strength of the coupling in

k space due to the potential and e�ective-mass variations. For the parabolic
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Figure 4.7: Calculated J � V curve of the baseline AlAs/GaAs double barrier
diode. Collisions are ignored. Nq = 268; � = a and Nk = 128.

energy band, the problem of the negative currents at positive bias (for the case

shown in Fig. 4.5) is not observed for the structure discussed here, the problem

with the upwind di�erence manifesting itself in that no negative di�erential

resistance is obtained.

The self-consistent J�V curve of the baseline diode calculated using �rst

order upwinding is shown in 4.7. Again, the results are clearly unsatisfactory.

It is natural to expect the results to improve by increasing the density of the

phase-space mesh. For instance, the approximation of the �rst order upwind

di�erence to the centered di�erence improves with decreasing mesh-spacing.

The density of the phase-space mesh was increased to study the e�ect on the

results. With � = a;Nq = 268 and Nk = 128 in the baseline mesh, two

cases where investigated. In the �rst case, � is halved thereby doubling the

mesh density in position and improving the accuracy of the �nite di�erence
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approximation to the drift term. To keep �k the same Nk must be doubled.

This increases the problem size (memory requirement) by a factor of 8. In

the second case, Nk is doubled thus doubling the density of the k-space mesh.

This increases the problem size by a factor of 4. Since the baseline k-mesh

density is already high, there is no observable change in the J � V curve curve

with the �ner k-mesh. Even with the �ner spatial mesh, the results were

essentially the same as that shown in Fig. 4.7. It is unlikely that increasing

the mesh density even further will improve results. The problem does not

lie in the coarseness of the mesh. In any case, the mesh density cannot be

increased any further without su�ering from shortage of workspace. A more

elegant solution will be discussed shortly. It is also important to note that

because the equation of motion and the spatial mesh follow directly from the

band structure parameter �, it is clear that reducing the mesh-spacing will

also imply a di�erent bandstructure. Increasing the mesh density also makes

the set of linear algebraic equations larger.

4.4.2 Second order upwind/downwind discretization

A second order upwind di�erencing scheme was investigated by Jensen and

Buot (1991) which improves the accuracy of the Wigner trajectories in Al-

GaAs/GaAs double barrier diodes. Consider a quadratic f(q) passing through

the points ( j�; fj), ((j + 1)�; fj+1), and ( (j + 2)�; fj+2) for k < 0 and

through the points ( j�; fj), ((j � 1)�; fj�1), and ( (j � 2)�; fj�2) for k > 0.

On taking the derivative of the quadratic at q = j�, the second order upwind

di�erencing results:

T = ��h sin(2k�)
4�2m�

(
�f(q + 2�) + 4f(q +�)� 3f(q) for k < 0
f(q � 2�)� 4f(q ��) + 3f(q) for k > 0

(4.16)

The J�V curves of the baseline AlAs/GaAs diode calculated using the

second order upwind di�erencing are shown in Fig. 4.8. While there appears to
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Figure 4.8: Calculated J � V curve of the baseline AlAs/GaAs double barrier
diode. Nq = 268; � = a and Nk = 128.
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be some improvement over �rst order upwind di�erencing, the results are still

far from satisfactory. To understand the importance of properly discretizing

the drift term we turn to the equation of motion in the tight-binding energy

band.

4.4.3 Improved discretization schemes

Clearly, numerical stability cannot be the overriding factor in the develop-

ment of a numerical model. In order to improve the �delity of the numerical

model to the physical model, hybrid discretization schemes are investigated

next. Consider a second order polynomial f(q) passing through the points

( (j � 1)�; fj�1), (j�; fj), and ( (j + 1)�; fj+1). On taking the derivative of

the polynomial we get:

@f

@q
=
fj+1 � fj�1

2�
+
fj+1 � 2fj + fj�1

2�

 
q � j�

�=2

!
(4.17)

Evaluating the derivative at q = j�, yields the centered di�erence. Evaluating

the derivative at q = (j � 1=2)� or q = (j + 1=2)� depending on the sign of

k, yields �rst order upwind di�erencing. Within this framework, the centered

and �rst order upwind schemes are special cases. Since the centered di�erence

is most appropriate, the derivative can be evaluated close to q = j� but away

from it so that some numerical dissipation is incorporated and a stable system

obtained. This is summarized by the following approximation (Gullapalli &

Neikirk, 1994):

fj+1n � fj�1n ! fj+1n � fj�1n � sgn (kn)�(fj+1n � 2fjn + fj�1n) (4.18)

where � = 2(q�j�)=� is a parameter that can be used to control the �delity of

the numerical model to the physical model. Using this scheme yields the results

shown in Fig. 4.9. The result of including collisions in the relaxation-time

approach with �f = 100fs, and including e�ective-mass nonuniformity is shown

in Fig. 4.10. Also shown in the �gure is a typical measured room-temperature
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Figure 4.9: Self-consistent J � V curve of the baseline AlAs/GaAs double
barrier diode. Nq = 268; � = a and Nk = 128. � = 0:1 and collisions are
ignored.
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characteristic of the baseline diode. The agreement is good below the peak

voltage. Phenomena such a � � X tunneling are expected to play a major

role in obtaining better agreement. While such e�ects can be included in the

analysis as discussed in chapter 3, this work addresses the more urgent need to

develop robust numerical techniques for the solution of the transport equation.

� cannot be made too small without running into numerical instability. It is

interesting that there is a tradeo� between numerical stability and accuracy.

What is perhaps surprising is that numerical stability is retained even with �

as low as 0:01.

Equation 4.18 can also be considered as a hybrid between the centered

di�erence and the �rst order upwind schemes. In that spirit, a hybrid between

the centered di�erence and the second order upwind schemes follows naturally.

This results in (Gullapalli, Miller, & Neikirk, 1994):

fj+1n � fj�1n ! 1

1 + �

"
fj+1n � fj�1n + �

(
�fj+2n + 4fj+1n � 2fjn kn < 0
fj�2n � 4fj�1n + 3fjn kn > 0

#

(4.19)

� = 0 yields the centered di�erence scheme and � ! 1 yields second order

upwind di�erencing. � = 1=2 yields a third order scheme. Using the third

order scheme, the J � V curve of the baseline device is shown in Fig. 4.11.

While the improvement in the uniform e�ective-mass case is signi�cant, when

the e�ective-mass is spatially varying, the results are not satisfactory. Even

letting � take large values does not cure the problem of negative currents.

There might be some concern that the discretization schemes considered

here are not transportive. Upwinding leads to transportive models: distur-

bances at a grid point propagate only in the direction of 
ow. However, since

V strongly couples the upwind and downwind 
ows, the transportive property

should not be of great concern here. In any case, the exact equation of motion

is not transportive either.
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Figure 4.11: Self-consistent J � V curve of the baseline AlAs/GaAs double
barrier diode. Nq = 268; � = a and Nk = 128. Collisions are ignored.
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4.5 Current density in the discrete model

To de�ne the current density in the discrete model, the equation of continuity

is �rst written. Here, the equation is

�k

2�

@

@t

X
n

fjn =
@nj

@t
=

�k

2�

X
j0n0

X
n

Ljn;j0n0fj0n0 (4.20)

While the continuum continuity equation follows from the odd symmetry of the

kernels V and Mo, the discrete kernels vanish after summation over n only if

the Fourier completeness condition is satis�ed. The collision term also vanishes

after the summation over n. Therefore the continuity equation is

@nj

@t
= ��k

2�

X
nj0n0

Tjn;j0n0fj0n0

� X
nj0n0

�k sin (2kn0�)Me
j0n�n0

4�Nk�

 
�j0j+1 � �j0j�1

2�

!
(4.21)

where T is the discrete drift term.

For the discretization 4.18 the continuity equation is:

@nj

@t
= � �h�k

8�m�
GaAs�

2

X
n

sin(2kn�) [(1� �)fj+1n + (1� �)fjn

�(1� �)fjn � (1� �)fj�1n]

� �h�k

8�Nk�2

X
nn0

sin(2kn0�)
h
Me

j+1n�n0fj+1n0 +Me
jn�n0fjn0

�Me
jn�n0fjn0 �Me

j�1n�n0fj�1n0

i

= �Jj+1=2 � Jj�1=2

�
(4.22)

where the top sign is used when kn < 0 and the bottom when kn > 0. Exam-

ining 4.22, the current density is de�ned as:

Jj+1=2 =
�h

8Nk�2

X
n

"
sin(2kn�) [(1� �)fj+1n + (1� �)fjn]

m�
GaAs

+
1

Nk

X
n0

sin(2kn0�)
h
Me

j+1n�n0fj+1n0 +Me
jn�n0fjn0

i#
(4.23)
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Following a similar procedure for the discretization 4.19, the de�nition

for current follows:

Jj+1=2 =
�h

8Nk�2

X
n

"
sin(2kn�)

(1 + �)m�
GaAs

�
(
(1 + 3�)fj+1n + fjn � �fj+2n kn < 0
(1 + 3�)fjn + fj+1n � �fj�1n kn > 0

+
1

Nk

X
n0

sin(2kn0�)
h
Me

j+1n�n0fj+1n0 +Me
jn�n0fjn0

i#
(4.24)

4.6 Solution method

For completeness, the solution procedure adopted in this work is brie
y out-

lined. Following the discretization discussed in the preceding sections, the set

of equations ANq
f = b for the Wigner function can be naturally put into a

block pentadiagonal system of the form:

2
6666666666666664

A11 A12 A13 � � � 0

A21 A22 A23
. . .

...

A31 A32 A33
. . . . . .

. . . . . . . . . . . . . . .
. . . . . . . . . . . . ANq�2Nq

...
. . . . . . . . . ANq�1Nq

0 � � � ANqNq�2 ANqNq�1 ANqNq

3
7777777777777775

2
666666666664

f1
f2
f3
...

fNq�2

fNq�1

fNq

3
777777777775
=

2
666666666664

b1
b2
b3
...

bNq�2

bNq�1

bNq

3
777777777775

If discretization 4.18 is used, we get a block tridiagonal system.

All the blocks are Nk�Nk and the fi and bi are in <N
k . The solution of

the Wigner transport equation, even in one dimension, can place an enormous

burden on memory and computational resources. For example, solving the

above equation using a band matrix algorithm requires 6NqN
2
k double precision

storage. For typical values of Nq = 200 and Nk = 128 the workspace is 150MB.

Adopting a block LU factorization algorithm reduces the storage required to
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one-fourth of that required by a band algorithm. Comparing blocks in An and

2
666666664

I � � � 0

L21 I

.

.

.

L31 L32 I

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.

.

.

.
.
.

.
.
.

.
.
.

0 � � � L
nn�2 L

nn�1 I

3
777777775

2
66666666664

U11 U12 A13 � � � 0

U22 U23

.
.
.

.

.

.

U33

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
. A

n�2n

.

.

.

.
.
. U

n�1n

0 � � � Unn

3
77777777775

we obtain, since the Uii are nonsingular, the following algorithm for the Lij and

Uij :

UT
11 = AT

11; UT
12 = AT

12; yT1 = bT1
Solve UT

11

h
LT
21jLT

31

i
=
h
AT

21jAT
31

i
UT
22 = AT

22 � UT
12L

T
21; UT

23 = AT
23 � AT

13L
T
31; yT2 = bT2 � yT1 L

T
21

for i = 3 : Nq

Solve UT
i�1i�1

h
LT
ii�1jLT

i+1i�1

i
=
h
AT
ii�1 � UT

i�2i�1L
T
ii�2jAT

i+1i�1

i
yTi = bTi � yTi�1L

T
ii�1 � yTii�2L

T
ii�2

UT
ii = AT

ii � UT
i�1iL

T
ii�1 � AT

i�2iL
T
ii�2

UT
ii+1 = AT

ii+1 � AT
i�1i+1L

T
ii�1

end

Executing the back substitution,

Solve UNqNq
fNq

= yNq

Solve UNq�1Nq�1fNq�1 = yNq�1 � UNq�1Nq
fNq�1

for i = Nq � 2 : 1
Solve Uiifi = yi � Uii+1fi+1 � Aii+2fi+2

end

we obtain the Wigner function. A similar block oriented method has recently

been published by Jensen and Ganguly (1993). The block LU factorization,

while not being as robust as the band LU method, works very well for the

simulation of the Wigner equation of motion. Whenever possible, the results

have been checked against those obtained using band LU factorization with

partial pivoting (see, for example, the code for band LU factorization in (Press

et al., 1992)).
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Block LU factorization is at least a factor of 4 faster than a band LU

factorization. Also, there is opportunity for considerable reduction in work

space required. At any stage only Lii�2, Lii�1 and Li+1i�1 need to be stored.

Lii�1 and Li+1i�1 are obtained using LU factorization. The forward substitution

is carried out as soon as Lii�1 and Li+1i�1 are available. Storage is mainly

required for Uii(Nk � Nk) and Uii+1(Nk � Nk=2). The reduced storage for

Uii+1 is because one half of Aii+2 is zero and one half of Aii+1 does not need

to be stored. Aii+1 and Aii+2 are easily recalculated as required during back

substitution. Further improvements in the solution procedure may be possible

by exploiting the odd-even symmetries of the blocks.

4.7 Summary

Traditionally, the use of the upwind di�erence scheme has been motivated by

considerations of numerical stability. In the present problem, however, we

have shown that it is more important to maintain the �delity of the numerical

model to the physical system. Upwind di�erence schemes for the drift term

yield completely meaningless predictions for high band o�set, AlAs/GaAs het-

erostructures where the bandstructure also varies signi�cantly. The stronger

the barrier, the more nonlocal in momentum is its e�ect. Errors due to upwind

di�erencing the drift-term in relatively low current carrying regions of momen-

tum space can be strongly coupled to high current carrying regions. While

this might not lead to major errors in the electron density, the error in the

overall current can be quite large especially near resonance, when the quantum

e�ects can be particularly strong. When the barrier is small, the e�ect is not

so important. In addition, since the e�ective-mass variation is also large in

AlAs/GaAs devices, and since this term also adds non-locality in momentum

space, the problem is even worse. We have presented improved hybrid di�er-

ence schemes that greatly improve the accuracy of the numerical model while
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maintaining numerical stability. An e�cient algorithm for the solution of the

transport equation, at least compared to the band LU factorization, has been

presented. This algorithm allows the simulation of much longer devices with

denser momentum grids.

While direct matrix solution has been adopted for the solution of the

transport equation, such methods have serious drawbacks. In particular, the

treatment is necessarily limited to one momentum direction, whereas processes

such as electron-phonon scattering redistribute energy in all momentum direc-

tions. Also, including general bandstructures is computationally overburden-

ing. Much of our understanding of semiclassical transport has been possible

due to the Monte Carlo technique (Jacoboni & Lugli, 1989). Since the structure

of the Wigner transport is very similar to the Boltzmann transport equation,

it is conceivable that powerful methods such as the Monte Carlo and cellular-

gas methods (Kometer & Zandler, 1992) can be adapted to solve the quantum

transport problem. While these possibilities have not been investigated, the

possibilities are intriguing.


