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As devices in the semiconductor industry tend to shrink below 0.1 µm

quantum devices that work because of their small size, rather than in spite of it,

become more attractive. It may be useful to simulate the operation of these devices

whose behavior depends upon quantum tunneling and interference effects using

comprehensive simulation tools.

In this work a two dimensional Schrodinger Poisson self-consistent

simulator is described and demonstrated.  Multi-valley coupling of effective mass

equations is demonstrated and evaluated.   A one dimensional Schrodinger Poisson

self-consistent algorithm based on the tight binding formalism is also described and

applied to heterostructure devices.  Data from simulations based on these methods

are compared with experimental data..

The methods developed allow the study of devices exhibiting quantum

coherence effects combined with space charge effects in the presence of complex

band structures and high electric fields.  Such characteristics are present in a
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 variety of heterobarrier problems and in structures with ultra-thin oxides.  Our self-

consistent tight binding algorithm has been tested on several device structures.
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Chapter 1  Introduction

There are a number of novel devices that depend upon quantum tunneling

and interference effects.  Since some of these device ideas are difficult to test in the

laboratory, the need to do optimization and inverse modeling in design of these

devices suggests development of more comprehensive simulation tools.

Effective mass approximation-based Schrödinger Poisson simulation tools

make it possible to rapidly simulate large device models.  Convergence is an issue

in part because the density of states function is highly nonlinear in these problems.

The tight binding Hamiltonian can be used to do simulations of a range of materials

including band mixing between materials.  Valley mixing affects carrier

concentration and transmission in devices with complex structures.  Less rigorous

methods based on effective mass approximations may be used to approximate these

effects.  However, there are differences between simulations based on coupling of

effective mass equations and on the tight binding approximation.

One class of novel devices is simulated with these methods.  The quantum

storage device (QSD) is one of the new class of novel devices based on simulations

and laboratory measurements.  The addition of simulation methods introduced here

add to the understanding of this device.  Self-consistent solutions to the

Schrödinger and Poisson equations have been widely used to identify both

qualitative, and with varying degrees of success, quantitative behavior of Double

Barrier Resonant Tunneling Diodes (DBRTDs)1,2.  Self-consistent solutions are

essential because quantum well diodes often incorporate lightly doped layers, and
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the resulting space-charge effects can significantly influence device

characteristics3,4.


