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Chapter 4 Tight Binding Approximation 

Chapter 4 .1 Background 

Calculation of tunneling currents in some materials systems, such as 

GaAs/AlAs, presents significant challenges.  Using MBE complex structures of 

thin layers may be grown with large concentrations and concentration gradients.  

Band mixing occurs at the interface between the GaAs and AlAs materials due to 

broken crystal symmetry.  Accurate simulation of tunneling currents in quantum 

well structures must take into account tunneling through the quantum well, space 

charge effects, band mixing at the interface, and phonon scattering.  There have 

been a number of examples in the literature of simulations that account for 

tunneling through the quantum well, and either space charge effects or band 

mixing at the interface but generally not both.  Alternatively, Wigner based 

simulations may take into account scattering by Relaxation Time Approximation 

(RTA) 21.  For comparison to low temperature experiments phonon scattering 

may be ignored. 

Tight binding simulations have been used in the past to determine 

tunneling currents but have not included space charge effects (i.e., the solutions 

were not self-consistent with Poisson’s equation).  However, tunneling currents 

may be significantly affected by space charge effects.  For example, in some 

heterostructures significant hysteresis in the I/V curve results from the inclusion 

of space charge43.  Until now self-consistent tight binding simulations have been 

primarily confined to determining band structures and offsets. 
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Chapter 4 .2 Tight Binding 

The crystal Schrödinger equation is given by 44 
 

H r H U r r k ratψ ψ ξ ψ( ) ( ( )) ( ) ( ) ( )= + =∆ ,   ( Chapter 4 .1) 

where H is the full Hamiltonian, Hat is the atomic Hamiltonian, and ∆U is the 

difference between the atomic potential and the periodic crystal potential.  The 

solution at each atom is a linear combination of n atomic orbitals.  The crystal 

wavefunction ψ is expanded in terms of Wannier functions φ by the equation 
 

ψ φ( ) ( )r e r Rik R

R

= −⋅∑ .    ( Chapter 4 .2 ) 

The Wannier function is given by 
 

φ ψ( ) ( )r b rn n
n

= ∑ ,     ( Chapter 4 .3 ) 

where ψn are orthogonal atomic orbitals.  Multiplying by ψm
* and integrating 

gives  
 

( )ξ ψ ψ ψ ψ( ) ( ) ( ) ( ) ( ) ( )* *k E r r dr r U r r drm m m− = ∫∫ ∆ ,  ( Chapter 4 .4 

) 

where Em is the energy associated with ψm.  These equations can be combined to 

form the equation 

( ) ( )

( )

ξ ξ ψ ψ

ψ ψ ψ ψ

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

*

* *

k E b k E r r R e dr b

r U r r dr b r U r r R e dr b

m m m m
R

n
ik R

n
n

m n n
n R

m n
ik R

n
n

− = − − −






+

+ −






∫∑∑

∫∑ ∑ ∫∑
≠

⋅

≠

⋅

0

0

∆ ∆
 ( 

Chapter 4 .5 ) 
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where the terms on the right hand side are small.  Integrals with terms centered on 

different sites, or overlap integrals, are assumed to be small.  The second term on 

the right hand side is small because the wave functions are small where ∆U is 

large.  The left hand side is small because bm is small except where ξ(k) is near 

Em.  It may be rewritten in the form 
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where the denominator may be assumed to be near one.  This gives the final form  
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Chapter 4 .8 ) 

where βm,n and γm,n are overlap integral values which may be determined by fits to 

empirical bands.  A tight binding matrix based on these empirical values forms an 

energy eigenvalue problem whose solution is the band structure of the bulk 

material.  

Solving for s like levels only requires one equation, p like levels require 

three, and d like levels require five equations.  For sp3 hybridization four 

equations are required.  Sp3 hybridization is present in sapphire and diamond 
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structures 45 but doesn’t completely describe indirect conduction bands.  In sp3s* 

hybridization five equations are required for each ion, there are six diagonal onsite 

energies, and seven transfer matrix elements. 

 

x

y

z

(1,-1,1)a /4L

(-1,1,1)a /4L

(1,1,-1)a /4L
(-1,-1,-1)a /4L

 

Figure Chapter 4 .1:  This is the zinceblend nearest neighbor structure.  The light 
sphere is an anion ( a ) and the dark spheres are cations ( c ). 

Although the parameters published by Vogl45 are generally useful, the 

effective mass values in some of the valleys conflict with published empirical 

values.  This affects the resulting density of states for these materials.  Parameters 

for the effective mass and minimas for GaAs and AlAs are shown in Table 

Chapter 4 .1 below.  

The equations from Vogl’s paper contain several mistakes.  The correct 

equations for onsite energies are given by 
 

( )E Esc sa s sc sa− = ⋅ −β ω ω ,     ( Chapter 4 .9 ) 

E E E Esc sa c v+ = −Γ Γ1 1 ,     ( Chapter 4 .10 ) 
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( )E Epc pa p pc pa− = ⋅ −β ω ω ,    ( Chapter 4 .11 )  

E E E Epc pa c v+ = −Γ Γ15 15 ,    ( Chapter 4 .12 )  

( )E E
s a s a s s c s a* * * * *− = ⋅ −β ω ω  , and   ( Chapter 4 .13 ) 

E E E Es c s a c v* *+ = −Γ Γ15 15 .    ( Chapter 4 .14 ) 

The equations for overlap terms are constrained by eigen solutions at Γ and X 

symmetry points in terms of the already determined onsite energies.  They are 

given by 
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 (Chapter 4 .21) 

These 13 matrix parameters are determined from empirical band structure 

energies EΓ1c, EΓ1v, EΓ15c, EΓ15v, EX1c, EX3c, and EX3v, atomic orbital energies ωsa, 

ωsc, ωpa, and ωpc, and constants βs, and βp.  Generally valence band information 

may be determined from bulk self-consistent calculations.  If known, valence band 

offsets may be included by shifting the diagonal matrix elements of the 

appropriate materials. 

Schrödinger's equation is given by the equation 
 

k n H k n E, ,′ ′ = ,    ( Chapter 4 .22 ) 

where k and k' are wave numbers, n and n' are band indices, H is the tight binding 

Hamiltonian, and E is the eigen energy.  The tight binding Hamiltonian has the 

form 
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where Ha, and Hc are given by the equations 
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where Esa, Esc are the s orbital onsite energies, Epa, Epc are the p orbital onsite 

energies, and Es*a, Es*c are the s* orbital onsite energies calculated in equations      

( Chapter 4 .9 )-( Chapter 4 .14 ).  Off diagonal submatrices Vac and Vca are given 

by 
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.26) 

and 
 

V Vca ac= † .    ( Chapter 4 .27 ) 

The sapphire structure is described by  
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( Chapter 4 .31 ) 

If the matrix parameters are known the empirical band structure data that it 

represents may be determined from the same scheme that is used to determine the 

matrix elements in equations ( Chapter 4 .9 )-( Chapter 4 .14 ).  First the valence 

band shift should be determined and removed from the matrix elements.  Then the 

underlying band structure data is given by 
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E vΓ15 0= ,     ( Chapter 4 .34 ) 
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Chapter 4 .38 ) 

and  
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Chapter 4 .39 ) 

where constant values are generally βs=0.8, and βp=0.6. 
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The parameters published by Vogl45 do not result in agreement with 

published density of states (and therefore density of states effective mass) in main 

valleys.  The T=77°K empirical parameters published by Boykin46 provide better 

agreement as shown in Table Chapter 4 .1.  These must be adjusted to the desired 

temperature to be used.  The proposed technique for making this adjustment is in 

proportion to the energy gap function with temperature.  Since the adjustment is 

small this should be sufficient.  The energy gap for the direct Γ valley of GaAs47 

is given by  
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and the ratio to the value at T=0°K is given by 
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For  the AlAs gamma valley 
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For the AlAs X valley 
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The difference between RΓ and RX is less than 0.22%.  These may be used 

to scale all bands for any arbitrary temperature.  Applying this to the empirical 
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band values EΓ1c, EΓ1v, EΓ15c, EΓ15v, EX1c, EX3c, EX3v, ωsa, ωsc, ωpa, and ωpc new 

matrix parameters may be derived at room temperature46. 
 

 Vogl45 Boykin46 Vogl45 Boykin46 
Material GaAs AlAs 

EΓ1c 1.55 1.538 3.04 3.136 
EG1v -12.55 -12.582 -11.73 -11.754 
EG15v 0.0 0.0 0.0 0.0* 
EG15c 4.71 4.629 4.57 4.57 
EX1v 9.83 -9.83 -9.52 -9.945 
EX3v -6.88 -6.88 5.69 -7.668 
EX1c 2.03 2.03 2.30 2.796 
EX3c 2.38 2.38 2.68 2.369 
EX5v -2.89  -2.20 -1.789 
mΓ 0.119 0.0691 0.295 0.147 
mX 0.105 0.203 0.228 1.94 
∆Ev 0 0 0 0.6303 

T (°K) 0 77 0? 77 
 

Table Chapter 4 .1:  These are band parameters from Vogl45 and Boykin46. 
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 77K 300K 77K 300K 
Material GaAs AlAs 
Esa -8.39 -8.39000 -8.2663110 -7.93797 
Epa 1.07475 1.07475 0.3442887 0.42500 
Es*a 8.57475 8.57475 6.8442390 6.84424 
Esc -2.65405 -2.65405 -1.6298230 -1.49230 
Epc 3.55475 3.55475 2.9476890 2.95360 
Es*c 6.70475 6.70475 6.0876890 6.08769 
Vss -6.4513 -6.4513 -6.6642 -6.47258 
Vxx 1.9546 1.9546 1.8780 1.82396 
Vxy 4.77 4.77 3.86 3.74898 
Vsa,pc 4.68 2.81494 5.6 5.43898 
Vsc,pa 7.7 7.7 7.6 7.6 
Vs*a,pc 4.85 4.06744 4.22 4.14617 
Vpa,s*c 6.9 4.49966 8.3 8.14127 
mΓ 0.0691 0.633 0.147 0.152 
mX 0.203 0.035 1.94 0.049 
∆Ev 0 0 0.6303 0.53 

Table Chapter 4 .2: The valence band offset at the GaAs/AlAs heterostructure interface at 
room temperature using the simple ratio. 

The valence band offset at the GaAs/AlAs heterostructure interface is 

often assumed to be about 40% of the direct gap.  At 0°K this is a valence band 

gap of 0.6392 eV.  From Adachi48 the valence band offset in eV is suggested to 

be given by  
 

( )∆E xv = ± ⋅0 51 0 04. .    ( Chapter 4 .46 ) 

where x is the Al mole fraction (AlxGa(1-x)As).  Also, theoretical calculations 

using self-consistent tight binding simulators show a valence band offset of 0.51 

eV49.  XPS measurements suggest 0.44 eV49.  Other references suggest a value 

of 0.48 eV.  There is significant research to suggest an offset somewhere in the 

0.5 eV range49-51.  The problem with choosing a 40% band gap resulting in a 
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valence band offset of about 0.64 eV is that it suggests that at the heterostructure 

interface the difference between EΓ in GaAs and EX in AlAs is very small, on the 

order of 0.067 eV.  This value should be about 0.2 eV52 which is consistent with 

a valence band offset of 0.51 eV.  The validity of an estimate may be determined 

by simulating currents in GaAs/AlAs heterostructures.  Some current simulations 

in the literature have been significantly higher than laboratory 

measurements46,53.  Although internal carrier concentrations may not be well 

known reasonable bounds do suggest restrictions.  Comparisons will be made 

between simulated and measured single barrier diode currents. 

Chapter 4 .3 Band Structures 

Good results in duplicating first conduction band and valence band of 

pseudopotential band structures have been shown in the literature54.  Tight 

binding matrix parameters are determined by fitting to empirical band data 47. 

In this simulation the tight binding parameters46 were determined for 

room temperature and shifted to reflect a valence band offset of 0.54 eV.  There 

remains significant controversy about the valence band offset.  The resulting band 

structure is shown in Figure Chapter 4 .2. 
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Figure Chapter 4 .2  This is the bandstructure of the first conduction band in GaAs 
and AlAs.  A valence band offset of 0.54 eV is used.   

These curves show the first conduction bands for GaAs and AlAs.  A 

single barrier device may be formed by sandwiching an AlAs barrier by GaAs on 

either side.  This forms a 1.09 eV barrier in Γ and 0.3 eV quantum well at X.  The 

AlAs X valley is only about 0.23 eV above the GaAs Γ valley.  

Chapter 4 .4 Discretization 

The nearest neighbor sapphire structure is shown in Figure Chapter 4 .1.  

The spacing between anions and cations is aL/4, where aL is the lattice spacing.  

The one dimensional discretization is defined by the equation 
 

V V e V ea c a c
ik

a

a c
ik

a
z

L
z

L

, , ,= ⋅ + ⋅+ − −4 4 ,   ( Chapter 4 .47 ) 

where the Va,c
+, and Va,c

- are hopping matrices forward and backward one node, 

and kz is the wavenumber in the z direction.  The terms g0 through g3 defining the 
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sapphire structure in matrix , (Chapter 4 .26) are split among these two matrices 

and are given by  
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Chapter 4 .48 ) 
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Chapter 4 .49 ) 
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There will be an overlap term between each combination of orbitals at 

these locations.  In order to discretize the equations along z, arbitrarily, the 

overlap matrices are split into forward or υ = +, and backward or υ = - parts.  

These overlap matrices are given by  
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where α and α’ are a (anion) or c (cation), and Vs
s, Vpc

sa, Vsa
pc, Vp

s*, Vs*
p, Vx

x and 

Vy
x are also tabulated.  Va,c

+ = Vc,a
- and Vc,a

+ = Va,c
- so that a Hamiltonian 

constructed of these components is Hermitian. 

The energy eigenvalue problem may be written 
 

HE(kx,ky,kz) Λ = E Λ ,   (Chapter 4 .57) 

where the Hamiltonian is given by  
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.58 ) 

which is k1, k2, and k3 dependent, Λ is a matrix composed of the set of 

eigenvectors of (Chapter 4 .57), and E is a vector composed of its eigenvalues.  
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The energy bands of the bulk material may determined by the eigenvalues as a 

function of k1, k2, and k3. 

The nearest neighbor discretization is given by the Hermitian matrix   
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,  ( Chapter 4 

.59 ) 

where Vac
- is the hopping matrix back one location and Vac

+ is the hopping matrix 

forward one location.  

There are quasibound and unbound solutions.  They are dealt with 

separately because ballistic transport is assumed to be elastic and so electrons 

from the contacts can not populate states below the contact energy levels.  The 

quasibound state solutions are eigenvectors for eigenstates which are below the 

contacts. 

There are two ways of solving for the wave equation for the unbound 

solution for a device at a range of nodes.  One method is to use the transfer matrix 

method or Green’s function recursion and the other is to build a single matrix and 

solve the matrix.  The transfer matrix method is numerically unstable after a few 

hundred nodes.  The transfer matrices may be used to build a matrix46 or  the 

underlying equations may be used to create the matrix. 
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Chapter 4 .5 Transfer Matrix method 

In the case of heterostructures with interfaces 55 there is no translational 

symmetry.  The boundary conditions are formulated in terms of solutions in three 

regions.  The first and third regions are vacuum or bulk material with zero 

potential gradient.  In the case of vacuum regions the solutions are in terms of 

simple plane waves.  The second region contains the model with interfaces and 

potential changes.  Solutions may be determined by reformulating the problem in 

companion form.  Assuming nearest neighbors  
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, , ,− − + ++ + =1 1 1 1 0 ,   ( Chapter 4 .60 ) 

where H are Hamiltonian matrix elements, i is the layer index, m is the number of 

orbitals, and G are the discretized Green’s function solutions.  The elements Hi,j 

are m by m matrices and G are m by 1.  Using this relation a companion form 

matrix may be formed37 resulting in 
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where d is the distance between monolayers and k⊥ is the wave vector in the 

crystal growth direction.  The modal matrix oriented with the eigenvectors which 

decay to the right and then the eigenvectors which decay to the left may be used 

on each end to formulate these boundary relations. 

The transfer matrix method is done by repeatedly applying equation 

(Chapter 4 .61),  where T is given by  
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For tight binding matrices this is the transfer from the anion to the cation, given 

by 
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the transfer matrix from the cation to the anion, given by 
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The translation from one anion to the next is given by Tac Tca.  This matrix is 

given by  
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) 

These transfer matrices may be used to translate from the wave function at one 

end of the device to the other where Ti =TacTca  for node I is found using the 

equation 
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where equation (Chapter 4 .61) forms a eigenvalue problem in eik
⊥

d.  The 

eigenvectors may be used to diagonalize the transfer matrix.  In the first and third 

bulk regions where there is no potential change the eigenvalue problem from 
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equations (Chapter 4 .61) and . ( Chapter 4 .65 ) may be used to transform 

from the plane wave basis to the orbital basis in the equations 
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where index i = 0 at the incident end and i = n at the transmitted end. 

At index zero there is an incident plane wave with amplitude I, where the 

reflected wave rb is unknown.  At index n there is a transmitted wave with 

amplitude τ.  The reflected wave on this end rf is known and may be assumed to 

be zero. 

Equations ( Chapter 4 .67 ) - ( Chapter 4 .69 ) may be used along with 

equation ( Chapter 4 .66 ) to solve for the wavefunction in a device with a plane 

wave incident on one end and a transmitted plane wave on the other.  To do this 

the eigenvectors must be arranged so that the associated eigenvalues are sorted 

with descending absolute values.  For the ten band case there will be five 

eigenvalues whose absolute values are greater than or equal to one, and five with 

eigenvalues whose absolute values are less than or equal to one.  At the incident 

end the eigenvalues greater than one are associated with plane waves traveling in 

a positive direction.  
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If there are m orbitals for the anion and m for the cation then the 

eigenvectors at each node will have 2m complex elements.  By sorting the 

eigenvectors by the absolute value of their eigenvalue in descending order the 

traveling waves are always complex conjugates located at the mth and m+1th 

element.  For small k and an energy above the conduction band minimum this 

may be assumed to be the Γ valley incident and reflected waves 
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Here rb  and t are unknown and rf and I are known. 

Chapter 4 .6 Quantum Transmitting Boundary Method (QTBM ) 

Since the transform matrix method is unstable, the preferable solution 

method is to write the problem in terms of a matrix as in equation ( Chapter 4 .59 

) plus additional equations from the boundary conditions.  The boundary 

conditions are contained in ( Chapter 4 .72 ), and (Chapter 4 .73). 
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The transmission coefficient may be calculated by the same method giving 
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m
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22 1 .   ( Chapter 4 .74 ) 
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Chapter 4 .7 Self-Consistent Simulation 

The Schrödinger Poisson iteration scheme was discussed in the previous 

chapter. Schrödinger Poisson self-consistent simulators iteratively determine the 

concentration and potential profiles.  When the potential update is below a 

threshold, the current is determined from the final potential profile.  Since the 

transmission spectrum is dependent upon this potential profile the current is 

highly dependent upon it as well.  The concentration calculation will be discussed 

in section 4.8.  If the initial potential profile guess is good, then few iterations may 

be necessary.  No general statement may be made about the difference in 

convergence rates between tight binding and effective mass approximations.  

Figure 3.6 shows an example of the convergence of a simple case. 

Chapter 4 .8 Concentration 

Electron concentration may be associated with bound or traveling wave 

states.  Concentration from bound states may be found by determining the energy 

eigenvalue and the eigenvector associated with it.  Carrier concentration 

associated with traveling waves is found by summing the concentration over the 

energy band.  For traveling wave states the matrix equation as shown in ( Chapter 

4 .59 ) is solved at a given k|| and energy with boundary condition equations ( 

Chapter 4 .72 ) and (Chapter 4 .73).  If the concentration for given bands is 

desired the density of states may be calculated for each band.  The wavefunction 

solutions are in terms of Wannier orbitals.  Density of states D for each band n 

may be determined by 
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Dn n n∝ ζ ζ* ,    ( Chapter 4 .75 ) 

n n m m Gn

m

mζ = ∑ Φ ,   ( Chapter 4 .76 ) 

where Φ is the Hermitian transpose of the modal matrix Λ defined in equation 

(Chapter 4 .57).  The wave vector kz is determined using the transfer matrix based 

eigenvalue equation (Chapter 4 .61) specific to each node.  The total density of 

states is generally sufficient if the only significant contribution to the carrier 

concentration, weighted by the Fermi Dirac distribution function, is from the 

desired band.  The total density of states D is given by  

D G Gm m∝ .    ( Chapter 4 .77 ) 

The concentration is given from first principles by 
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where Ci
n is the electron concentration at node i in band n, EF is the Fermi level, ξ 

is energy, kx is the wavevector in the x direction, ky is the wavevector in the y 

direction, k|| is the wavevector parallel to the surface, and Emax is the maximum 

energy in the band.  Because of the symmetry of the problem ¼ of the Brillouin 

zone is integrated.  The derivative 
∂
∂

k

E
z

z

may be determined numerically by 

determining the eigenvalue solution for the energy eigenvalue problem for a 

slightly incremented kz, the wavevector perpendicular to the surface.  If as an 
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approximation a k|| is chosen rather than integrating over kx and ky the 

concentration calculation may be reduced to the form in Chapter 3. 

Chapter 4 .9 Current 

Current may be determined 46 by integrating over the Brillouin zone.  The 

current density may be calculated using  
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, ( Chapter 4 

.79 ) 

where Ecmax and Ecmin are the maximum and minimum conduction band 

energies possible within the band for k||, fRIGHT(E) and fLEFT(E) are Fermi Dirac 

distributions for the right and left contact regions, and T(E,k||,Vbias) is the 

transmission coefficient from ( Chapter 4 .74 ). 

Since the triple integral in, ( Chapter 4 .79 ) is obviously time consuming 

simplification to an integral of the form in ( 3.30 ) is desirable.  The inclusion of a 

nonzero k|| from equipartition may be done simply but it assumes the transmission 

coefficient depends only on E and Vbias, which is not generally true.  Figure 

Chapter 4 .3 shows the transmission coefficient as a function of energy and k|| as 

determined by ( Chapter 4 .74 ). 
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Figure Chapter 4 .3:  This is a plot of the transmission coefficient versus k|| and 
energy.  k|| is varied from 0 on the left to 2/aL on the right where a is the node 
spacing.  Energy is varied from 0 in front to about 20kT (0.518 eV) in the back.  
The transmission coefficient is highly dependent on k||. 

Chapter 4 .10 Results 

In this section the algorithm described in previous sections is tested using 

simple structures for which the answers are understood.  These simple structures 

are used as building blocks for increasingly complex simulations.  Since these 

quantum transport algorithms simulate only some of the models that describe the 

2 

0 0 

k|| Energy 

.518 
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physics controlling the behavior of devices, a comparison between simulations 

and laboratory measurements shows correspondence at best.  As methods are 

developed that include more physical models the correspondence should improve.  

In any case the models described here do not include scattering and other 

processes.  Interpretation of the simulation requires understanding the models 

used. 

Because self-consistent tight binding calculations require correct 

concentration calculations, a test is done to show the compatibility of the tight 

binding and effective mass approximations.  Concentration calculations in single 

material structures with modulation doping profiles should agree with 

Schrödinger Poisson self-consistent effective mass simulations.  Several such 

comparisons have been done showing essentially identical results by these two 

methods.  Agreement is shown between concentration and potential profiles at 

zero bias in Figure Chapter 4 .4 for a simple N+ / N- / N+ structure.  Both are self-

consistent simulations. 
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Figure Chapter 4 .4:  This is a comparison between the self-consistent simulations 
using the tight binding and effective mass approximation.  These are two curves, 
dark for tight binding and light for effective mass.  These two curves are nearly 
identical making the separate curves difficult to distinguish.  No adjustable 
parameters are used to achieve a match beyond reasonable band and effective 
mass parameters.  Here the density of states (DOS) of the first conduction band is 
used.  The calculation using the total DOS gives the same results. 

Simulation of a device containing band mixing should not show agreement 

between tight binding and single valley effective mass approximations.  A single 

barrier device is such a structure because band mixing occurs between the Γ and 

X valleys at the GaA/AlAs interface.  In Figure Chapter 4 .5 a tight binding 

simulation shows a concentration of about 7x1016 (cm-3) in the barrier.  The 

effective mass simulation shows only evanescent waves in the barrier. 
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Figure Chapter 4 .5:  This concentration profile shows a comparison between tight 
binding and effective mass approximation simulations of a 100 Å AlAs barrier.  
The solid line shows the tight binding concentration which is about 7x1016 cm-3 in 
the barrier.  Since the effective mass waves are evanescent in the barrier, there is 
very little concentration in the dashed curve. 

Self-consistent simulations of single barrier diodes with the tight binding 

and effective mass approximations should show significant differences.  

Simulations of the single barrier device structure shown in Figure Chapter 4 .6 

were done at 77K.  The resulting potential and concentration solutions are shown 

in Figure Chapter 4 .7.  As expected there is significant concentration 

accumulation on the up wind side and depletion on the down wind side of the 

barrier.  Current simulations of a 5 ML diode in Figure Chapter 4 .8 show 

Negative Differential Resistance (NDR) at about 0.3 and 0.4 volts and for a 7 ML 

diode show NDR particularly around 0.41 volts .  NDR has been experimentally 

observed for a single barrier diode at low temperature 56.  Other tight binding 

current simulations of single barrier devices have shown current densities that are 

significantly too large 46.  This is because of the tight binding parameters chosen 
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and because the simulations were not self-consistent.  The simulations shown here 

are in good agreement in general shape and magnitude with simpler simulations 

and laboratory measurements57. 
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Figure Chapter 4 .6:  This is a single barrier device structure in the GaAs/AlAs 
materials system.  Here the AlAs barrier is 14 Å or about 5 ML. 
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Figure Chapter 4 .7:  Potential profiles are shown on the left at zero and 0.3 volts 
bias.  Electron concentration is shown to the right for these two cases.  In both 
cases the solid curve is for the 0.3 volt bias case.  Note concentration increase on 
upwind side of the barrier at position 85. 
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Figure Chapter 4 .8:  Current density versus bias is shown for 5 ML and 7 ML 
AlAs barriers.  The dots are intermediate points as convergence occurs.  These 
simulations are done at 77K. 

The next structure in increasing complexity to be considered is the 

DBRTD.  For various applications it is desirable to calculate the peak and valley 

currents and voltages of these devices.  Simulations based on the effective mass 

approximation generally show very low valley current which does not agree with 

laboratory measurements.  This is primarily because this elastic model does not 

account for scattering of electrons into resonances, tunneling through the AlAs 

barrier by coupling between Γ-X-Γ valleys,  and self-consistent effects due to not 

considering these effects in the concentration calculations.  By modeling various 

of these effects comparison with laboratory measurements should indicate their 

relative importance. 

The DBRTD structure simulated is  shown in Figure Chapter 4 .9.  The 

DOS function is shown at several points in the device structure in Figure Chapter 

4 .10 as well as the transmission spectrum.  Note that transmission is greater than 
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in the effective mass approximation because of the additional transmission path 

through Γ-X-Γ.  Comparisons of self-consistent potentials and concentrations 

using tight binding show higher concentration in the region of the barrier as 

expected, and potential about 13% higher in the heterostructure region when 

compared to the effective mass approximations.  This is significant because this 

large a band mixing effect on the potential effects the transmission spectrum and 

current, as shown in Figure Chapter 4 .11.  The potential and concentration 

profiles at zero and 0.30 volts bias are shown in Figure Chapter 4 .12.  

Concentration accumulations are present in the conduction band notches created 

on the upwind side of the two barriers as expected. 

 

 

Figure Chapter 4 .9:  This is the DBRTD device structure.  It is a symmetric 
structure with a 50 Å heterostructure quantum well with 17Å AlAs barriers.   
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Figure Chapter 4 .10: This is the density of states (DOS) and transmission (τ) at 
several locations in the DBRTD device shown above the graph.  Curve 1 
corresponds to the beginning of the device at the contact, curve 2 corresponds to 
the end of the N++ region, curve 3 corresponds to the N- region adjacent to the 
barrier and curve 4 corresponds to the heterostructure quantum well.  Note that the 
transmission coefficient in curve 5 peaks at about 0.18 eV.  This coincides with 
the peak in the DOS spectrum of curve 4 which is the heterostructure quantum 
well.  All other curves show a minimum at this energy indicating the electron 
lifetime is small except in  the well.  The other maxima and minima particularly in 
curve 1 are due to interference between incident wave and the wave reflected from 
the barrier.  The transmission coefficient is larger than in Figure 3.5. 
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Figure Chapter 4 .11:  This figure shows the potential and concentration profile 
for this DBRTD.  The solid curve is the tight binding approximation and the 
dashed curve is the effective mass approximation.  Note that the concentration is 
very similar except in the barrier region where the tight binding concentration is 
larger, as expected.  As a consequence the potential profile from the tight binding 
simulation is about 13% larger. 
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Figure Chapter 4 .12:  These are the tight binding simulation potential and 
concentration profiles at zero and 0.30 volts bias.  Note the upwind potential 
barrier at position 40. 
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A transmission spectrum for this device is shown in Figure Chapter 4 .13.  

It shows a transmission peak at 0.18 eV and a Fano resonance at about 0.36 eV.  

Fanno resonances are resonance-antiresonance pairs.  The resonance is due to the 

well in the GaAs/AlAs/GaAs X valley and the antiresonance is due to cancellation 

of Γ-X by Γ-Γ evanescent waves in the barrier where they are π out of phase and 

the same magnitude 29. 
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Figure Chapter 4 .13:  This is the DBRTD transmission spectrum.  The resonance 
at about 0.18 eV is shown as well as at 0.36 eV and 0.42 eV.  The resonance at 
0.36 eV is a resonance-antiresonance pair (a Fanno resonance) caused by 
interference between Γ-Γ and Γ-X waves.  This is confirmation of Γ-X band 
mixing. 

 

Γ-X-Γ coupling increases the transmission coefficient shown in Figure 

Chapter 4 .10 compared to that shown with the effective mass approximation in 

Figure 3.5.  A comparison between currents from tight binding and effective mass 

approximation are shown in Figure Chapter 4 .14.  The potential profile may be 

determined by several methods.  A first order approximation may be made by 
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straight line segments.  A better approximation may be made by adding a self-

consistent zero bias solution to the straight line solution.  The best and most time 

consuming approximation may be made using a full self-consistent simulation.  

Laboratory measurements show a peak current density of about 42 killoamps/cm2 

(kamps/cm2) which agrees well with the effective mass and tight binding self-

consistent simulations.  The straight line potential approach has significantly 

higher current at the peak and lower peak voltage.  This is because the upwind 

barrier shown in Figure Chapter 4 .12 is not modeled. 

The peak voltage is at about 0.21 volts bias.  Laboratory measurements 

shown in Figure 2.3 indicate a peak voltage at about 0.67 volts bias.  The 

difference between peak and valley biases is about 0.25 volts.  The self-consistent 

simulation shows a difference of about 0.2 volts.  Non self-consistent simulations 

show a smaller potential difference.  Since the peak to valley differences are 

similar this suggests a contact voltage drop of about 0.46 volts. 

Laboratory measurements indicate a valley current of about 12 kamps/cm2.  

The effective mass simulations show a valley current of less than 2 kamps/cm2.  

Tight binding simulations show a valley current of about 10 kamp/cm2.  These 

simulations show more rounded current functions than observed in the laboratory.  

This is probably because of upwind barrier height which is sensitive to 

assumptions made about the GaAs background concentration.  This suggests a 

higher background assumption than in the simulations.  Values of 1015 and 1016 

cm-3 have been tried. 
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Figure Chapter 4 .14:  This is a plot of current density versus bias voltage for this 
DBRTD using several assumptions.  Curve 1 is a self-consistent simulation based 
on the effective mass approximation.  Curve 2 is a non self-consistent tight 
binding simulation assuming a straight line potential approximation.  Curve 3 is a 
non self-consistent tight binding simulation assuming a better potential 
approximation.  Curve 4 is a self-consistent tight binding simulation. 

MODFET’s and the RTD’s described earlier have significant similarities.  

Quantum transport models may allow simulation to optimally design complex 

MODFET structures.  Here a simple structure58 shown in Figure Chapter 4 .15 

has been simulated as an example of the issues involved.  Potential and 

concentration profiles from a zero bias tight binding simulation and a Thomas-

Fermi simulation are shown in Figure Chapter 4 .16.  In the tight binding 

simulation a notch is observed in the N++ pulse doped region of the AlGaAs 

layer.  The oscillatory nature of the carrier concentration in this region may be due 

to quantum interference.  In addition, because this is a transport model, due to the 

barriers formed by the potential profile on either side of this pulse doped region, 

the transmission of electrons from the contacts to this portion of the device is very 
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low.  The source and drain contacts provide an additional path to supply electrons 

which should cause increased concentration in the pulse doped region and the 

channel.  Concentration and potential profiles are shown in Figure Chapter 4 .16. 
 

~~

AlGaAs
5e18

 

Figure Chapter 4 .15:  This is a delta doped MODFET device structure. 
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Figure Chapter 4 .16:  The potential profile is shown to the left and the 
concentration profile is shown to the right.  Two curves are shown.  The dashed 
one is a Thomas Fermi simulation and the solid one is a tight binding simulation.  
Note the interference minimum that is located in the vicinity of the pulse doped 
region. 

Chapter 4 .11 Summary 

In this chapter space charge, interference, and tunneling effects have been 

included in simulations using tight binding formalism.  The methods used have 

been explained and appropriate parameters chosen.  These tight binding 

parameters represent accurate band structures.  Greens function recursions may be 

used with adaptive solvers to get solutions or alternately single sparse matrices 

may be solved by LU decomposition.  The latter method is employed here to 

obtain solutions using QTBM.  Both concentration and current calculations are 

made and a practical method of determining the concentration in each band is 

formulated and tested.  Concentration calculations are made integrating over k 

space and assuming kT is determined by equipartition.  Although the common 
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habit of assuming kT to be determined in this way has been shown to be a poor 

approximation for current calculations it is computationally too expensive to do 

otherwise on the problems considered.  Concentration and current calculations 

done using these methods give reasonable results for simple structures. 

Low temperature current calculations of single barrier structures show 

small NDR features which have been observed empirically.  This has been 

simulated incorrectly in the past by other authors 46.  In the simulations shown 

here small Γ - X conversion effects are observed for thin barriers.  The 

concentration in the X valley in the AlAs layer effects the space charge solution.  

Resonances due to the X valley effect the transmission spectrum and so the 

current.  Among other things this improves valley current calculations in RTDs. 


