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Chapter 1 Introduction 

There are a number of novel devices that depend upon quantum tunneling 

and interference effects.  Since some of these device ideas are difficult to test in 

the laboratory, the need to do optimization and inverse modeling in design of 

these devices suggests development of more comprehensive simulation tools. 

Effective mass approximation-based Schrödinger Poisson simulation tools 

make it possible to rapidly simulate large device models.  Convergence is an issue 

in part because the density of states function is highly nonlinear in these problems.  

The tight binding Hamiltonian can be used to do simulations of a range of 

materials including band mixing between materials.  Valley mixing affects carrier 

concentration and transmission in devices with complex structures.  Less rigorous 

methods based on effective mass approximations may be used to approximate 

these effects.  However, there are differences between simulations based on 

coupling of effective mass equations and on the tight binding approximation. 

One class of novel devices is simulated with these methods.  The quantum 

storage device (QSD) is one of the new class of novel devices based on 

simulations and laboratory measurements.  The addition of simulation methods 

introduced here add to the understanding of this device.  Self-consistent solutions 

to the Schrödinger and Poisson equations have been widely used to identify both 

qualitative, and with varying degrees of success, quantitative behavior of Double 

Barrier Resonant Tunneling Diodes (DBRTDs)1,2.  Self-consistent solutions are 

essential because quantum well diodes often incorporate lightly doped layers, and 
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the resulting space-charge effects can significantly influence device 

characteristics3,4. 
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Chapter 2 Quantum Switching 

Chapter 2 .1 Motivation 

The semiconductor industry has used the ability to develop smaller and 

faster devices to fuel the explosive growth in productivity and functionality of 

electronic products. However, as devices shrink below 0.1 µm in size, physical 

phenomena must be identified that can produce devices that work as well or better 

than the larger devices utilized over the last forty years. In particular, quantum 

devices that work because of their small size, rather than in spite of it, become 

more attractive. It is critical to explore the potential of this new class of ultra-

small devices. 

The continued trend in the integrated circuit industry toward smaller 

individual devices (transistors) has actually become part of the financial structure 

of the industry.  There is a focus in every area of device fabrication toward next 

generation technologies that scale (shrink) in a favorable way.  Unfortunately, the 

resources and technology required to decrease minimum feature size in each 

generation of semiconductor devices continues to increase.  Industry is now 

wrestling with fundamental physical device size limitations that threaten to limit 

further scaling.  This suggests that new device building blocks be developed 

whose ideal size is in the new operating regimes.  Many quantum phenomena 

evidence themselves most strongly in this sub-0.1 µm size range.  This gives 

quantum devices, which may have no intrinsic scaling limitations, a potential role 

in the future of the industry. 
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Chapter 2 .2 Definition of Quantum Storage 

Quantum storage cells are composed of a device or of several devices 

which depend upon quantum confinement, tunneling, or an interaction between 

these phenomena and charge effects or other effects for their operation.  

Preferably quantum storage cells should be composed of a single device which has 

multiple electrically distinguishable stable states accessed through one line and set 

through another.  To be useful these memory cells should have terminal 

characteristics which allow them to drive variable length interconnects with 

acceptable noise margins and fan out. 

Quantum storage based memory may be volatile or non-volatile, static or 

dynamic as in other types of memory.  Non-volatile memory retains its memory 

state when power is turned off.  Static Random Access Memory (SRAM) is an 

example of  volatile static memory.  Dynamic Random Access Memory (DRAM) 

is volatile and dynamic, requiring regular refresh cycles that consume significant 

amounts of power dissipated as heat.  DRAM is significantly slower than SRAM 

but it is used because of its low cost and high density.  There would be an 

enormous amount of interest in a device with SRAM performance at the cost and 

densities of conventional DRAM.  Quantum storage based memory has potential 

to accomplish this. 

There are two methods of achieving quantum storage.  One is to use logic 

devices whose operation is based on quantum phenomena to make memory 

circuits.  The other is to use a single device that exhibits memory characteristics 

using quantum phenomena.  It is difficult to imagine a single device that is robust 
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enough to perform all of the functionality of a memory cell so most cases are a 

hybrid of these two methods.  In either case, there is a significant advantage to 

compatibility with established fabrication methods and with existing linear and 

digital electronics families. 

Chapter 2 .3 Cellular Automaton 

There are several examples of quantum phenomena based logic which may 

be used to make memory.  Lent5-11 has proposed a family of logic based on 

coupled quantum dots that can be used to make interconnect lines and perform 

basic logic functions.  These are known as Quantum Cellular Automaton (QCA).  

It is tempting to design devices from low dimensional structures, such as quantum 

dots whose charge is governed by quantization effects, particularly for digital 

logic.  In order to be small enough to benefit from quantum confinement a 

quantum dot must be a few hundred nm in diameter or smaller.  This makes it 

difficult to make physical contact between a quantum dot and a metal 

interconnect.  The QCA is a suggested solution. 



 6

1

23

4

0

numbering scheme
for calculating cell
polarity

QCA "wire"

20 nm

10 nm

 

Figure Chapter 2 .1:  A QCA wire is shown where the charge state at one end of 
the array of dots effects the charge distribution at the other.  Here dark dots 
contain charge and clear dots do not.  Coulombic forces cause charge to align as 
shown.  In referring to occupied dots the numbering scheme shown is used. 

In this scheme each cell is composed of five quantum dots, as shown in 

Figure Chapter 2 .1.  Each dot may be 200 nm across and 100 nm from its nearest 

neighbor. Interaction between cells is governed by Schrödinger’s wave equation 

H Eψ ψ=      ( Chapter 2 .1 ) 
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( Chapter 2 .2 ) 

where H is the Hamiltonian, ψ is the wave function solution, E is the energy 

eigenvalue, E0 is the onsite energy which is the same for all sites, ni,σ is the 

number operator generating an electron at site i with spin σ, ti,j is the tunneling 

energy from site i to site j,  and EQ is the coulombic energy required to have two 
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electrons on the same site of opposite spin.  The interactions between cells is 

predominantly controlled by the coulombic perturbation between neighboring 

cells so that the Hamiltonian at cell 1 due to cell 2 is given by  

H H Hcell cell cell= +0 12 ,      ( Chapter 2 .3 ) 

where 
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R R
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,    ( Chapter 2 .4 ) 

and where ρ is some assumed fixed positive charge to achieve space charge 

neutrality.  The polarity of a cell may be defined as  

( ) ( )
( ) ( )P =

+ − +

+ + + +

ρ ρ ρ ρ
ρ ρ ρ ρ ρ

1 3 2 4

1 3 2 4 0

,   ( Chapter 2 .5 ) 

where ρn is the charge at location n.  This is the numbering scheme for calculating 

polarization of each cell and it has values in the range of -1 to 1.  The lowest 

energy and preferred solution occurs when neighboring cells align themselves 

with the same polarization.  If an initial polarization is supplied by a “driver” to a 

QCA quantum interconnect, a polarization of 1 or -1 occurs within a couple of 

cells alignment and continues to subsequent cells5. 

A range of  logic circuits have been designed using QCA including 

fundamental AND and OR gates as well as more complicated circuits like a full 

adder.  It may be dangerous to make assumptions about the state of a cell when 

the polarizing effects of the driver are removed, say to infinity.  Since work is 

done in reading the state of a cell the very act of determining its state may change 

the polarity of a cell or entire QCA wire in an unpredictable way.  In order to 

reliably achieve memory functions a memory cell constructed of basic QCA logic 
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elements may be used without making any assumptions about the volatility of the 

data.  
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Figure Chapter 2 .2 

Figure Chapter 2 .2 shows an SR latch composed of two NOR gates 

constructed from QCA logic.  One NOR gate is in outlined for reference.  The cell 

size is about 0.3 µm by about 0.4 µm.  This is a SRAM cell comparable in size to 

a conventional DRAM cell. 

A more critical assessment of this logic family must be considered.  This 

thought experiment is carried out at T=0K.  It could be tested at 4K but it would 

probably have to work at least at 77K (liquid nitrogen) to be useful.  For space 

charge neutrality there must be two holes positive charge on each cell.  This 
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suggests precise placement of two donor dopant ions in the memory cell would be 

required, where only statistical doping control has been demonstrated.  Expected 

statistical variations in the doping should significantly change the electrical 

characteristics of each cell.  Although direct write methods of photolithograpy do 

have the resolution required to create these patterns of dots, these methods have 

not been used for production.  At the time of this writing fully functioning QCAs 

have not been demonstrated in the laboratory.  

Chapter 2 .4 RTD Based Logic 

Another example of a novel family of logic that may be used to create 

memory is based on Resonant Tunneling Diodes (RTDs). RTDs are ultra high 

frequency, generally two terminal, majority carrier devices usually built from III/V 

materials using Molecular Beam Epitaxy (MBE) composed of a heterostructure 

quantum well.  The quantum well is usually on the order of 50 Å in width 

composed of a sandwich of barrier or high conduction/valence band offset on 

either side of a low conduction/valence band offset material.  These devices are 

characterized by an “N” shaped I/V curve with a peak where the bias aligns a 

large carrier population at the contacts with a resonance in the well12.  A valley or 

low in the I/V curve occurs when the applied bias aligns a very small carrier 

population in the contacts with resonances in the quantum well.  Since transport is 

ballistic to the first order, the carriers do not scatter from one energy to another.  

Tunneling through a quantum well is a quantum phenomenon typically producing 

peak currents into the hundreds of kilo amperes/cm2.  By classical physics 

assumptions essentially no current would flow in these devices.  Operating by 
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ballistic transport and having low intrinsic capacitance, they may be assumed to 

be, and are, high speed devices.  The I/V curve of these devices may have negative 

differential resistance (NDR).  An example of the structure and I/V curve are 

shown in Figure Chapter 2 .3. 
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Figure Chapter 2 .3:  This is a typical current density versus bias curve for a 
Double Barrier Resonant Tunneling Diode (DBRTD).  Here a load line is shown 

as well.  This is not quantitatively the load line used in this measurement 13. 

The switching characteristic used to achieve this memory may fall into 

three categories.  The first category is load line switching, where more than one 

solution may occur between the I/V characteristics of a nonlinear device and the 

load line.  The history of the operation of the device governs which of these 

solutions is the operating point.  This device may be used to make logic.  The 
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second category is intrinsic bi-stability which occurs in some devices where 

charge is stored in the device during rising bias and supplied during decreasing 

bias.  This hysteresis loop in the I/V curve causes there to be two possible 

operating voltages at a given current.  Both of these types of logic are volatile.  A 

third category, memory switching, refers to a case in which there are two stable 

states maintained with no power dissipation and without input, so it is non-

volatile.  Any of these might be used to create memory devices because they 

provide multiple operating voltages at the same current, dependent on history. 

A number of attempts to make fast RTD based logic devices have been 

made14.  These devices are based on load line switching. Load line switching 

based RTDs maintain their state while under load, but generally have poor 

terminal characteristics.  Various schemes have been used to  create a standard 

memory cell using these devices.  A representative scheme is shown in Figure 

Chapter 2 .415.  This design from Texas Instruments employs “ultra-low” current 

density RTDs which dissipate 50 nW of standby power.  These devices are 

constructed in the InGaAs/InAlAs and InP materials system. Heterostructure Field 

Effect Transistors (HFETs) are used for the switching transistors.  This device is 

comparable in area to DRAM cells while not requiring a refresh cycle.  Access 

times below 0.5 ns have been demonstrated.  This architecture lends itself to 

vertical integration which aids in achieving high density.  Multiple valued logic 

can also be achieved by using cascaded RTD structures.  The device count to 

perform basic logic functions is much lower because of the use of multi-valued 

logic. 
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Figure Chapter 2 .4:  This is a memory cell based upon a RTD using load line 

switching15. 

Chapter 2 .5 Memory Switching 

A number of memory switching devices have been reported in the 

literature.  Since they are non-volatile and static the device count to create very 

functional memory cells is low.  Langmuir-Blodgett film-metal sandwiches, for 
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instance, show conductivity changes due to light irradiation or applied voltages16.  

For electrically switchable metal-film-metal structures a preliminary high voltage 

is applied as a forming procedure and then these devices display memory 

switching characteristics.  A film thickness of 18 nm has been used with an off 

state resistance of 106 Ω and on state resistance of 20-100 Ω.  This phenomenon 

may be caused by structural change in the film during switching.  The device is 

simple to fabricate and is not necessarily incompatible with standard silicon 

fabrication procedures.  One negative possibility is that switching is due to 

filamentary pathways.  Sandwiches of metal-SiO2 metal have also been observed 

to show memory effects after a similar forming procedure, but these have been 

attributed to highly conductive filamentary pathways of heavily doped silicon 

which form and are destroyed during switching17. 

Typically observations of memory switching are difficult to explain.  

Charge trapped in interface layers at a metal semiconductor boundary can result in 

memory switching.  Such devices are generally not useful because they are 

difficult to reproduce.  In any case two terminal devices that change resistance 

when a voltage is applied are difficult to use without supporting active electronics.  

On/off state resistances must not be ambiguous when observed through an 

interconnect of varying length/resistance to any particular memory cell. 

Flash memory is a conventional type of memory that attempts to use 

trapped charge in a reproducible way.  In this device a floating gate accumulates 

charge which affects the source drain current characteristics of the device.  In 

Electrically Erasable Programmable Read Only Memory (EEPROM) hot electrons 
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are used to reset the memory state of the device.  For a range of applications these 

are very useful devices.  They have comparatively very long write times and some 

long term deterioration with the number of write cycles. 

A flash memory cell which accumulates charge on a floating quantum dot 

above the channel has been built by IBM18.  This device is an excellent example 

of the concept of a quantum device whose operating principles become more 

favorable as it becomes smaller.  The change in threshold voltage (∆Vt) resulting 

from charge trapped in the quantum dot increases as the quantum dot size 

decreases.  This device is interesting because it has very small off currents in the 

10 pA (10-9 ampere) range, small operating voltages, and potentially excellent 

scaling characteristics.  It is not clear whether write times, which have always 

been the major drawback for electrically erasable flash memory, will improve in 

this design. 

Chapter 2 .6 Quantum Storage Device  

Gullapalli and Neikirk have proposed a method to engineer a charge trap.  

The Quantum Storage Device (QSD) is a modified quantum well diode that relies 

on the interaction of the quantum well region with N- / N+ / N- doped layers to 

achieve its multiple conduction states19-22.  Unlike other multiple state quantum 

structures, the QSD has different current versus voltage curves corresponding to 

the different conduction states.  Preliminary experimental findings indicate that 

these states remain stable even under short circuit conditions and can only be 

switched from one state to another with the application of bias in excess of certain 

threshold voltages.  Furthermore, calculations using a self-consistent coherent 
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tunneling model indicate that it is possible to design QSD cells with more than 

two states, creating the possibility of multi-state logic and multi-bit storage19-21. 

QSDs are functionally dissimilar to Shockley diodes or thyristors, which 

also change resistance at a break-over voltage but return to the original resistance 

at low voltage.  The distinct differential resistance corresponding to each state in a 

QSD is retained even at zero bias until another switching voltage is applied, at 

which point it changes to that associated with the other state, as shown in Figure 

Chapter 2 .5. 
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Figure Chapter 2 .5:  These curves show several read write cycles of a QSD.  The 
curves are grouped into states "1" and "2".  Application of about 1.2 volts 
switches the device from curve "1" to curve "2".  Application of about -1.2 volts 
switches the device from curve "2" to curve "1". 

This multi-state behavior has been shown to occur in two terminal devices 

with a thin heterobarrier structure in close proximity to a novel N- / N+ / N- doped 

layer design.  A double barrier quantum well structure has been grown in a Varian 
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Gen II MBE system that consisted of an 18 monolayer (ML) lightly doped n-type 

(1015 cm-3) GaAs quantum well sandwiched between nominally symmetric 6 ML 

unintentionally doped AlAs barriers.  The quantum well structure was surrounded 

on both sides by an 18 ML n-type (1015 cm-3) GaAs layer, 43 ML n+ (4x1018cm-3) 

GaAs layer, and 65 ML n-type (1015 cm-3) GaAs layer.  The doping sequence was 

found to be crucial to device operation.  Only devices with quantum interference 

between a barrier structure and a well with a highly variable charge distribution 

show evidence of multiple conduction curves.  In particular, conventional Double 

Barrier RTDs (DBRTDs) with monotonically doped layers show no evidence of 

multi-state behavior. 

The device described above possesses memory, in that once the device is 

placed in one state it will remain in that state over a wide range of bias voltages 

including zero bias (i.e., the multiple states exist even at zero bias).  Once the 

device is placed on one branch of its I-V characteristic, it will remain on that 

branch at zero bias.  The state of the device at zero bias (which can be sensed via 

the value of its differential resistance), is determined by whether the device was 

last switched to the high current curve or to the low current curve.  Even when the 

device is completely disconnected from the bias supply, or its terminals are short 

circuited, upon re-connection, the differential resistance is unchanged from its 

pre-set value. In this sense, the device possesses memory of its state, that can be 

retained without requiring any bias or dissipating any power.  Simulations suggest 

that multi-state behavior occurs in other structures including single and triple 
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barrier devices as long as a N- / N+ / N- doped layers are in near proximity to the 

heterobarrier. 

The potential advantages of the QSD over existing technologies are 

significant.  First, the QSD can be scaled down to the limit of the 

photolithography system.  From initial findings, it appears that the cell should 

work at mesoscopic geometries creating the possibilities of extremely high density 

memory or logic.  The QSD has the advantage of operating at room temperature. 

Furthermore, there is a possibility that the QSD can serve as a static, non-volatile 

memory element or logic device with zero holding power, since the multiple 

conduction states are stable for extended periods of time even when completely 

disconnected from any power supply.  Finally, since the QSD is a simple two 

dimensional structure, memory cells may be stacked on top of each other.  This 

fact, coupled with the possibility of more than two conduction states per cell, 

offers other possibilities of achieving very high densities. 

There are several problems that must be overcome before the QSD is a 

viable alternative.  First, the switching characteristics of these two terminal 

devices are poor.  Attempts have been made to develop a three terminal version by 

making direct contact to the N+ layer23.  Second, write currents are high.  Third, 

on and off resistances are at best a factor of two different.  Fourth, resistive 

memory elements require supporting electronics to make viable memory cells.  

And finally, the devices that have been made so far have been in the GaAs/AlAs 

materials system which is costly and difficult to integrate with conventional 

silicon technology.  
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Chapter 2 .7 Summary 

These devices suggest directions for the next generation of technology. 

Determining which developments will thrust any particular technology into the 

forefront is obviously difficult.  At any particular instant it is important to be 

aware of the short comings of proposed new technologies without assuming they 

are fatal.  With that in mind, a critical assessment of these new technologies 

should be considered24.  Because of the nature of these devices that may be 

difficult to do in the laboratory. 

In some schemes new novel devices are used in memory cells containing 

conventional devices in order to improve functionality.  It is important to note that 

the fundamental size limitation of a cell is determined by the largest device in the 

cell.  Although lower device counts would be extremely important, the cell size 

decrease possible without fundamental changes in the technology of all the 

components is limited to a few generations. 

Interconnects play an increasing part as the bottleneck in performance.  

Although Lent claims that QCA "wires" do not have the same interconnect 

limitations, they have not been built.  The main advantage of smaller SRAM 

would be inclusion on the CPU of large amounts of fast memory eliminating or 

reducing caching requirements.  This would require a compatible materials system 

which is difficult to achieve.  As we go to smaller devices, design assumptions 

must take into account statistical variations inherent in using nano-structures25. 

An evaluation tool for quantum tunneling calculation that can handle a 

variety of effects would enable review of the physical characteristics of these and 
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other devices.  The QSD, a pathological case, is characterized by tunneling 

through a heterostructure quantum well, quantum interference, large space charge 

effects, band mixing, and phonon scattering.  Such an evaluation tool would be 

useful in modeling other devices. 


