
44

Chapter 4

Deflection of multiple thin film diaphragms

In this chapter mechanical properties of deposited films on silicon wafers

are to be discussed.  The properties, such as residual stress and Young's modulus,

will be used to estimate deflection of films when external pressure is applied to

them.  The residual stress of a multiple film stack is measured by the beam

curvature method.  Also, the deflection of diaphragms, consisting of multiple

dielectric films, is calculated by a numerical method, i.e., the Marcuse method.

4.1 MECHANICAL PROPERTIES OF MULTIPLE FILM STACKS

There are two mechanical properties of films to be considered when

micromachined Fabry-Perot cavity sensors are built.  They are the Young’s

modulus and the residual stress in the films, which determine mechanical

compliance of the films and in turn the sensitivity of the sensors, and reliability of

the process for the sensors.  Since the properties of thin films are strongly affected

by deposition conditions and subsequent processing steps, like annealing, the

properties of films are difficult to predict at the design stage.  The actual

mechanical properties of films can be estimated by several measurement methods

[1-5] , after all the processing steps have been completed.  Using micromachining

techniques the methods allow the measurement of thin-film mechanical properties

on micrometer scales, which can not be done with conventional methods.  To

monitor localized residual stress on wafers, microstructures have been placed on
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the same wafers on which real devices are being fabricated [2-4] .  In addition,

novel methods, which extract both Young’s modulus and stress of films at the

same time, have been developed [1, 5] .  With these methods Young’s modulus

and stress could be determined independently by analyzing load-deflection

behavior of a diaphragm made of the films  to be measured.

Most micromechanical structures have residual stress built up during

fabrication due to intrinsic stress and thermal stress.  The stress inside the

structures tends to produce unwanted tension or compression forces and, in turn,

causes buckling or cracking of the microstructures when the structures are

released from the substrate.  Deformation of the microstructures are undesirable

for many applications, especially for Fabry-Perot cavities.  To prevent the

deformation, a composite film stack, consisting of films under compressive stress

and under tensile stress, has been used for supporting microstructures.  The

composite stack is found to have less total stress by compensating the

compressive (or tensile) stress of films with the tensile (or compressive) stress of

other films.

Equivalent residual stress and Young’s modulus of a composite film stack

can be obtained using the equations [5]

Eeq =
(Ei ⋅ hi )

i
∑

hi
i

∑
   and  σeq =

(σi ⋅ hi )
i

∑
hi

i
∑

, (4.1)

where Ei  and σi  are Young’s modulus and residual stress of the ith film,

respectively.
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Figure 4.1 shows measurement of residual stress in dielectric films

deposited by LPCVD (low pressure chemical vapor deposition) on Si substrates.

The residual stress was estimated by measuring the curvature of the Si substrates

before and after depositing films.  For a given radius of curvature the stress (σ )

of the film is obtained from the following equations [6, 7] :

σ = E

1 − υ
⋅ lsub

2

l film

⋅ 1
6r

  , (4.2)

where l film  is the thickness of a film, lsub  is the thickness of the substrate, r  is the

radius of curvature, and υ  is Poison’s ratio of the substrate.  By convention, r  is

negative for convex curvature induced by compressive stress and positive for

concave curvature induced by tensile stress.  As implied in equation (4.1), the

measured residual stress of a composite film, consisting of silicon dioxide

(compressive) and silicon nitride (tensile), is observed to be less than the stress of

silicon nitride.  The measured residual stress of the dielectric films agrees with

previously published values [5, 8] .

Note that the stress of a film is a function of the deposition conditions of

the film.  Silicon nitride was deposited by reaction of ammonia (NH3) and

dichlorosilane (SiCl2H2) at gas flow rate of 3.5:1 at 800 oC  and 220 mTorr.

Silicon dioxide was deposited by reaction of silane (SiH4) and oxygen (O2) at gas

flow rate of 3:4 at 450 oC  and 110 mTorr.
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Figure 4.1 :  Residual stress measurement of deposited films using substrate
curvature method.  A composite film consists of silicon nitride
(2000 Å) and silicon dioxide (1500 Å).

Instead of making composite films, buckling of diaphragms due to

compressive stress could be avoided by adjusting the dimensions of the

diaphragms, such as the lateral dimensions or thickness.  For given dimensions of

a diaphragm, there exists a maximum compressive force which can be applied to a

diaphragm along the middle plane of the diaphragm without buckling.  The

maximum compressive force is called the critical compressive force.  Assume that

a clamped-edges square diaphragm with length of a  is compressed in its middle

plane by force N  (per unit length) uniformly distributed along the edges.  When
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N  is increased to a critical value ( Ncr ), the flat diaphragm becomes unstable and

buckles.  This critical compressive force Ncr  is given by

Ncr = 5.33 ⋅ π 2 ⋅ D

a2 , (4.3)

where D  is the flexural rigidity of a diaphragm with thickness h   [9] .  The

flexural rigidity D  of a film stack is

D  = E ⋅ h3

12 ⋅ (1 − υ 2 )
  ,

where E  is the Young’s modulus of the diaphragm and υ  is poison’s ratio of the

diaphragm.  Equation (4.3) implies that a diaphragm under compressive stress,

like a silicon dioxide diaphragm, would be flat if h3

a2  of the diaphragm is large

enough to make Ncr  bigger than the residual compressive stress.  This fact will be

considered when the fabrication process for the Fabry-Perot cavity sensor is

designed in chapter 5.

4.2 DEFLECTION OF MULTIPLE FILM STACKS

In this section, the deflection of a diaphragm consisting of multiple

dielectric films is calculated when external pressure is applied to the diaphragm.

The diaphragm could be formed by either bulk micromachining techniques or

surface micromachining techniques.  The boundary conditions of the diaphragm

depend on the technique the diaphragm is built with.  To have simpler boundary

conditions, the diaphragm formed using the bulk micromachining technique has
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been considered because the clamped boundary conditions along the edges could

be assumed for the diaphragm.  The deflection of the square composite diaphragm

is modeled as the deflection of a rigidly clamped square plate which has

equivalent Young’s modulus and equivalent residual stress of the composite

diaphragm.  Suppose the length and thickness of a plate are a  and h ,

respectively.  As shown in the last section, the composite film stack has

equivalent Young’s modulus and equivalent residual stress, which are calculated

from equation (4.1).  The equivalent residual stress (σ ) is assumed to be

uniformly distributed throughout the film stack and is positive for tensile stress

and negative for compressive stress.  The deflection of the film by external

pressure (q ) is assumed to be comparable to the thickness of the film stack.  This

assumption is valid for Fabry-Perot cavity pressure sensors which are designed in

such a way that the movable mirror travels fractions of an optical wavelength for

a full range of pressure to be measured.  Under the above conditions, the

deflection (ω ) of the composite film stack is obtained by solving the differential

equation

∂ 4ω
∂x4 + 2

∂ 4ω
∂x2∂y2 + ∂ 4ω

∂y4 = q
D

+ T

D

∂ 2ω
∂y2 + ∂ 2ω

∂y2







, (4.4)

where D  is flexural rigidity of a film stack and T  is equal to σ ⋅ h .

Taking the coordinate origin at the center of the film stack, the boundary

conditions for all edges clamped are

ω = ∂ω
∂x

= 0  at x = ±a / 2,
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ω = ∂ω
∂y

= 0  at y = ±a / 2  .

Since obtaining an exact solution satisfying the above boundary conditions

is very difficult, an approximate solution can be calculated using a numerical

method, the Marcuse method.  The Marcuse method has been shown to be

sufficiently accurate for practical purposes [10, 11] .  As an alternative, a more

simplified solution can be obtained by solving Equation (4.4) under certain

conditions.  Details of the procedure are shown in Appendix A.

With the above boundary conditions, the deflection of a diaphragm has

been calculated by the Marcuse method.  For convenience in numerical

calculation, the residual stress (T ) of the film stack is represented in terms of Te ,

where Te = 4π2D / a2 , and D  is the flexural rigidity of the diaphragm.  The

solutions to the deflection equations of diaphragms with residual stress of zero

and 6Te  , as examples, are

ω = K

37.96
1 − 0.349sin(2.087ξ )sinh(2.087ξ ) − 0.101cos(2.087ξ )cosh(2.087ξ ){ }

× 1 − 0.349sin(2.087ϕ )sinh(2.087ϕ ) − 0.101cos(2.087ϕ )cosh(2.087ϕ ){ } (4.5)

and

ω = K

191.23
1 − 0.21cosh(2.716ξ ) + 0.0009cosh(7.2ξ ){ }

   × 1 − 0.21cosh(2.716ϕ ) + 0.0009cosh(7.2ϕ ){ } , (4.6)

where K = a4 ⋅ q

16D
, ξ = 2x

a
  and  ϕ = 2y

a
  .
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 Figure 4.2. shows a plot of the normalized deflection for a fixed external

pressure versus residual stress of the diaphragm.  The Young's modulus and

thickness of the diaphragm are assumed to be 160 GPa and 0.8 µm, respectively.

For a fixed external pressure the deflection of the diaphragm at center, where

maximum deflection occurs, decreases as residual stress increases.  This implies

that the sensitivity of Fabry-Perot cavity sensors would be degraded by higher

residual stress in the moving mirror.
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Figure 4.2 :  Dependency of a diaphragm deflection at center on residual stress of
the diaphragm.



52

0.2

0.4

0.6

0.8

111

0

1

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1

2y
/a

2x/a

(a)

Figure 4.3  :  Normalized deflection of diaphragm as a function of residual stress.
(a) without residual stress;  (b) with residual stress ( 6Te).  Numbers
on the contour lines represent normalized deflected height to
deflection at center (origin in maps).

Also, the residual stress of the diaphragm makes the shape of the deflected

film stack change.  Figure 4.3 shows contour maps of deflected height generated

using equation (4.5) and equation (4.6).  From the maps, it is obvious that the

deflected shape of a diaphragm with residual tensile stress becomes  flatter as the

residual tensile stress increases.
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Figure 4.3 :  continued.

4.3 DESIGN ISSUES FOR MECHANICAL COMPLIANCE

To match the compliance of a multiple film stack to the pressure range to

be measured, there are several design variables, such as size, mechanical travel,

and residual stress of the stack, to be considered.  However, all design variables

are not freely adjustable to achieve a desired compliance of the stack.  For

example, mechanical travel of the stack is usually upper-bounded by one half of
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the wavelength of the illumination source to maintain a single-valued optical

response.  The mechanical travel can also be bounded by the optimum mechanical

travel which is obtained as shown in chapter 3 when process-induced thickness

variation is considered.  For a fixed mechanical travel the compliance of the stack

can be adjusted by changing the lateral size and residual stress of the stack.  For

example, for a simple geometry the compliance of the stack is proportional to the

square of the area, as shown in equation (4.6).  Tensile stress of the stack can

decrease the compliance by up to a factor of 5 as shown in Figure 4.2.  This

residual stress can be controlled by changing the relative thickness ratio of the

layers.  For a Fabry-Perot cavity based pressure sensor, however, the tensile stress

of the stack is not totally an independent variable since the thickness of each layer

also affects the optical response of the cavity.  Thus, adjusting the lateral size of

the stack will be the easiest way to tailor the compliance of the stack for this type

of pressure sensor.
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4.4 SUMMARY

Mechanical properties of a multiple film stack, consisting of silicon

dioxide and silicon nitride, were studied.  Using beam curvature method the

residual stresses of dielectric layers prepared by LPCVD were measured.  In

addition to residual stress, equivalent Young’s Modulus of a multiple stack was

calculated, assuming the films prepared in our facility have the same values of

Young’s Modulus as those in [5, 8] .  The mechanical properties determine the

compliance as well as the deflected shape of a multiple stack, which will be a

moving mirror of a Fabry-Perot cavity based sensor.  The deflection of a multiple

stack was calculated using a numerical method, i.e. the Marcuse method,

revealing the impact of residual stress on the compliance of a multiple stack.  The

compliance as well as the deflected shape of the multiple stack will be used to

simulate the optical response of the Fabry-Perot cavity sensor.


