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As semiconductor device speeds continue to increase it is becoming more critical to

accurately model the parasitic effects of the interconnects (both on-chip and off-chip)

between the digital circuit elements.  The simulation of signal propagation along the in-

terconnects using SPICE or some other circuit simulator is desirable.  Therefore, elec-

trical circuit representation of the interconnects (i.e., an equivalent electrical circuit rep-

resentation of the physical interconnect) is required.  A critical part of such extraction is

the determination of the series impedance produced by finite conductivity wires and

power/ground planes.  For instance, resistance and inductance are frequency dependent

due to the skin and proximity effects.  Such frequency dependent effects can be deter-

mined using Maxwell's equation solvers, but using this approach as the first step in pa-

rameter extraction is computationally intensive, and frequently too slow.  Faster and

more efficient geometry-to-circuit extraction is necessary for regular lossy transmission

lines and complex three dimensional structures.

This dissertation presents an efficient and accurate quasi-static methodology of

evaluating the series impedance of interconnects based on the effective internal
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impedance.  Three effective internal impedance models are developed, which pre-char-

acterize the internal behavior of conductors and assigns a complex impedance to the

surface of the conductor.  Therefore, the effective internal impedance replaces the con-

ductor interior by a surface, and considerably saves computation time.  This approach

must be coupled with an electromagnetic field solver.  For example, the conformal

mapping technique can be combined with the effective internal impedance; here this ap-

proach is applied to various planar transmission lines, and shown to be numerically ef-

ficient and reasonably accurate.  The effective internal impedance is more effectively in-

corporated with the surface current integral equations, the efficiency and accuracy of

this technique is examined in this dissertation through several two and three dimen-

sional structures of inter-chip interconnects, e.g. multichip modules (MCM) and print

circuit boards (PCB), and comparisons are made to the rigorous quasi-static techniques

of the volume filament technique (VFM) and the partial element equivalent circuit

method (PEEC).  The methodology using the effective internal impedance is shown to

be fast and accurate and to be integrable with various circuit simulators.
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