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Chapter 2

Effective Internal Impedance

The impedance boundary condition (IBC) is widely used in scattering problems,

eddy current problems, lossy transmission line problems, etc.  The IBC is adopted to

get rid of the lossy dielectric, multi-layered coatings over conductors in scattering

problems, and the lossy conductors in eddy current problems and transmission line

problems from the domain to be solved.  The problems are solved then by applying

the finite element method (FEM) [4, 5], the boundary element method (BEM) [6, 7],

the electric/magnetic field integral equation method (MFIE/EFIE) [8, 9], the finite

difference time domain method (FDTD) [10, 11], etc. and this IBC reduces the num-

ber of unknowns and saves a substantial amount of computation time.  But, in gen-

eral, the boundary condition must be known (at least approximately) a priori  on the

surface, and the accuracy of the fields solved is determined by the relevance of the

IBC used.

The most widely used IBC is the Standard Impedance Boundary Condition

(SIBC), also called the Leontovich boundary condition [12, 13].  It is valid when the

skin depth is small relative to other dimensions of the problem, or the layer is thin and

highly lossy.  For coated dielectric layers of scatterers, in general, the reflection of

electromagnetic wave at the boundary depends on the angle of the incident wave, and

it requires higher level of IBCs [13], such as the Tensor Impedance Boundary

Condition (TIBC), the Higher Order Impedance Boundary Conditions (HOIBC), etc.

For eddy current problems and transmission line problems, the Leontovich boundary

condition has been used for lossy conductors at high frequency.  In this chapter, as an
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approximation to the surface impedance of an isolated conductor, three effective in-

ternal impedance (EII) models will be presented which approximately characterize the

inside of a lossy rectangular conductor from low frequency (i.e., the skin depth is

larger than the cross-sectional dimensions of the conductor) to high frequency (i.e.,

the skin depth is far smaller than the dimensions of the conductor).  The effective in-

ternal impedance (EII) and SIBC will be compared in the case of rectangular conduc-

tors and the appropriateness of the effective internal impedance (EII) models as SIBC

will be explained for lossy transmission lines from DC to high frequency.

2.1 Standard Impedance Boundary Condition

Schelkunoff [14] first introduced the concept of surface impedance in electro-

magnetics in 1934 for the analysis of coaxial cables.  And in 1940's Leontovich [12]

as well as many other Russians did the basic studies of the surface impedance on a

semi-infinite plane of an isotropic linear medium and on a conductor-backed thin

lossy dielectric layer where a plane wave is incident.  Senior [15] explained in detail

the Leontovich boundary conditions and the requisites to be satisfied.  According to

Leontovich, at the surface on the lossy conductor the electric and magnetic fields are

related by

E
→

− (n̂ ⋅ E
→

)n̂ = Zsn̂ × H
→

(2.1)

where Zs  is the surface impedance and n̂  is normal outward unit vector.  This SIBC

is based on the postulate that the relationship between the tangential electric and

magnetic fields at any point on the boundary is a purely local one, depending only on

the curvature of the surface and the electromagnetic properties of the bodies.

Therefore, the condition of (2.1) is valid only when the curvature radii of the surface
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is larger than the skin depth, the refractive index of the bodies is larger than that of the

external medium and the dimensions of the problem is smaller than the wavelength.

That is, the dimensions of the problem are larger than the skin depth, the reflection

characteristic is independent of the incident angle, and the operating frequency is

much lower than the dielectric relaxation frequency.  For a semi-infinite plane of an

isotropic linear lossy conductor, the surface impedance is given by

Zs (ω ) = jωµ
σ

= (1 + j)
σδ

(2.2)

where ω  is the frequency in radians per second, µ  the permeability, σ  the conduc-

tivity, and δ  the skin depth.  And for a conductor-backed thin lossy dielectric, the

surface impedance is

Zs (ω ) = jωµ
σ + jωε

tanh γ (ω )d{ } (2.3)

where the propagation constant γ (ω ) = jωµ(σ + jωε ) , and d  is the thickness of

the dielectric layer.  For geometries having curvature, Leontovich introduced a first

order curvature correction term to the surface impedance for small radii of curvature

and Mitzner [16] refined it later.

Unless restrictions are placed on the shape of the surface, the IBC should involve

the geometrical properties in addition to the curvature, as well as the electrical proper-

ties of the material and, in consequence, may vary from point to point on the surface.

Many transmission lines make use of conductors with rectangular cross-section, and

corners and slots are generally used for eddy current problems such as non-destructive

testing (NDT), shielding, etc.  Several models for corners and edges [18-20] have

been presented for use as an SIBC.  Even though those models have been based on
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profound understandings of electromagnetics, still there is a lack of accuracy at low

frequency.  And, in addition, for low frequency where the skin depth is comparable to

or larger than the dimensions of the structures, the surface impedance has no more the

local property and depends on the global geometries of the conductors.  At low fre-

quency the surface impedance when other conductors are present considerably differ

from the surface impedance of an isolated conductor.  These limit the usefulness of

SIBC for lossy transmission lines at low frequency and necessitate higher order

models of impedance boundary conditions (IBC).  In following sections, three models

of the effective internal impedance (EII) are introduced for the case of rectangular

conductors, which approximates the surface impedance of an isolated conductors and

is used to represent resistance and internal inductance of the conductors.  These are

compared with each other and the surface impedance of the isolated rectangular con-

ductor, and the utilization of EII is clarified compared to SIBC.

2.2 Effective Internal Impedance of Rectangular Conductors

As the speed of the integrated circuits (IC) is getting higher, the loss of the inter-

connects is becoming more important.  The high speed digital signals span a wide

bandwidth from DC to frequencies about the inverse of the rise time, and at high fre-

quency the skin and proximity effects begin to take effect.  On the other hand in

monolithic microwave integrated circuits (MMIC) the miniaturization of the structure

causes the conductor loss to increase, and the skin depth is on the order of the size of

the conductors.  Therefore, fast and efficient methods are needed to evaluate fre-

quency dependent parameters of the lossy transmission lines from DC to high fre-

quency, i.e., resistance and inductance for quasi-TEM transmission lines, which are

used for circuit simulations.
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The Leontovich boundary condition at low frequency, and at corners and edges

of the structure, can be modified in some cases.  For a thin flat conductors in an

MMIC, instead of a single-valued surface impedance (2.4), the surface impedance

matrix (2.5) can be used to relate the tangential electric field of one surface to the tan-

gential magnetic fields of the other surface as well as of the same surface at low fre-

quency. This is called the transfer impedance boundary condition as in reference [17],

and under the same incident fields on both sides of the thin flat conductors it becomes

(2.4).

 Zs (ω ) =

jωµ
σ

tanh jωµσ t

2




=

(1 + j)
σδ

tanh
(1 + j)

δ
t

2




(2.4)

where t  is the thickness of the conductor.

 
E||

t

E||
b







=

Ztt Ztb

Zbt Zbb







Ht
t

Ht
b







(2.5)

where

 Ztt = Zbb =

jωµ
σ

tanh jωµσ t( ) =

(1 + j)
σδ

tanh
(1 + j)

δ
t


 Ztb = Zbt =

jωµ
σ

sinh jωµσ t( ) =

(1 + j)
σδ

sinh
(1 + j)

δ
t


and E||
t  and E||

b , Ht
t  and Ht

b  are the electric field parallel to current flows and the

tangential magnetic field on the top and the bottom of the plates, respectively.  But for
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rectangular conductors where width to thickness ratio is not too large, the above

modification to the surface impedance model must consider all four surfaces, making

a 4 × 4  matrix, with each element of the matrix a complicated, position-dependent

function of geometries.  For the structures of the interconnects in high speed digital

integrated circuits and modern MMICs, rectangular conductors are the common ge-

ometries and the thickness is not negligible compared to the width of the conductor.

Deely [18] introduced a modified surface impedance near a   90o  corner for ana-

lyzing the induction heating problem with BEM.  It is based on the assumption that

the transverse magnetic (TM) plane wave is normally incident onto all surfaces of the

conductor, and this model gives good approximation to the surface impedance from

mid to high frequency.  Jingguo et al. [19, 20] extended this model to corners of arbi-

trary angle, transverse electric (TE) problems, and three dimensional structures of

cubic conductor and cylindrical conductor.  But these models only consider the inter-

action between two adjoining surfaces.  This model has been recently modified to

consider the effect of all four sides of rectangular conductors for transverse magnetic

(TM) problems [21, 22], and is named the plane wave model.  This plane wave model

still gives poor approximation to the surface impedance at low frequency and in this

section the modified model is introduced along with previous works.  The surface

impedance of the rectangular conductor could be modeled by using a transmission

line analogy, and it has been successfully used for analyzing several lossy transmis-

sion lines [23].  This transmission line model is also explained in this section.  The

proposed models are to be used to evaluate resistance and inductance of lossy trans-

mission lines, not to calculate the fields of the problems, but to represent resistance
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and internal inductance of the lossy conductors.  So, to distinguish the proposed

models from SIBC these are named the effective internal impedance (EII).

2.2.1 Plane Wave Model

Under the assumption that a transverse magnetic (TM) plane wave is incident

onto the surface of the conductors, the surface impedance can be approximated by

solving the diffusion equation locally.  But this does not give a good approximation at

low frequency because this only considers the two adjoining surfaces.  By assuming

uniform TM plane waves incident on all four surface as shown in Fig. 2.1 and consid-

ering the fields penetrating from the other three surfaces, the magnetic and electric

field on one surface of the conductor c  wide and d  thick can be represented, respec-

tively, by

H
→

(x, y) = Ho e−γy − eγ (y−d )( )âx + −e−γx + eγ (x−c)( )ây[ ] (2.6)

E
→

(x, y) = âzHo
jωµ
σ

e−γx + eγ (x−c) + e−γy + eγ (y−d )( ) (2.7)

EII is expressed by relating the tangential electric field to the tangential magnetic

field,

Zeii (ω , x, y = 0) = Ez

Hx
= jωµ

σ
e−γx + eγ (x−c) + 1 + e−γd

1 − e−γd (2.8)

The equation above is quite simple and closed form approximating the surface

impedance of an isolated rectangular conductor.  In the limit of ω → 0, on the top,

bottom, and side surfaces this model gives a constant surface impedance, respectively,

of



15

Zeii (0, x, y = 0) = 4
σd

   (2.9)

Zeii (0, x = 0, y) = 4
σc

 (2.10)
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Figure 2.1:  Plane wave model for the effective internal impedance.  Transverse

Magnetic (TM) wave is incident onto all surfaces of the conductor.  Effective internal

impedance is calculated by solving diffusion equation locally.
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Figure 2.2:  Wave reflection and transmission from a lossy conductor in air.
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From these constant EII the correct DC resistance is obtained. But all four surfaces

share the same amount of resistance, which is a poor approximation to the surface

impedance for wide rectangular conductors at low frequency .  At high frequency

where the skin depth is far smaller than the geometries of the problem, this model ap-

proaches jωµ / σ , the surface impedance of a semi-infinite plane of an isotropic

conductor.

2.2.2 Modified Plane Wave Model

When the skin depth is comparable to or larger than the thickness or width of the

conductor, the incident fields onto one surface of the conductor not only penetrate to

but also reflect from the interfaces as shown in Fig. 2.2.  By allowing this reflection

and transmission of the incident field at the interfaces of two media, the magnetic

field is expressed by

H
→

(x, y) = Ho âx

e−γy − eγ (y−d ) + Γ eγ (y−2d ) − e−γ (y+d )( )
1 − Γe−2γd



















+ây

−e−γx + eγ (x−c) + Γ eγ (x−2c) − e−γ (x+c)( )
1 − Γe−2γc


















,       (2.11)

where

Γ = ηo − ηm

ηo + ηm
ηo = µo

εo
ηm = jωµ

σ
.

Γ  is the reflection coefficient at the interface between the conductor and air (seen

from conductor side), and ηo  and ηm  are wave impedances of air and conductor, re-

spectively.  The electric field is given by
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E
→

(x, y) = âzHo
jωµ
σ

e−γy + eγ (y−d ) + Γ eγ (y−2d ) + e−γ (y+d )( )
1 − Γe−2γd







+
e−γx + eγ (x−c) + Γ eγ (x−2c) + e−γ (x+c)( )

1 − Γe−2γc






.     (2.12)

Therefore, a modified plane wave model EII is written at a point on the bottom or top

surface as

Zeii (ω , x, y = 0) = jωµ
σ

1

1 − e−γd( ) 1 + Γe−γd( ) 1 + e−γd( ) 1 + Γe−γd( ){

+ 1 − Γe−2γd

1 − Γe−2γc e−γx + eγ (x−c) + Γ eγ (x−2c) + e−γ (x+c)( )[ ]


(2.13)

As ω → 0, above model gives constant EII for all surfaces,

Zeii 0, x = 0, y( ) = Zeii 0, x, y = 0( ) = 2
σ

1
c

+ 1
d





 . (2.14)

This gives the right DC resistance, and averages DC resistance over all the surface

with uniform weighting.  At high frequency this model also approaches to jωµ / σ ,

the surface impedance of a semi-infinite plane of an isotropic conductor.

2.2.3 Transmission Line Model

A simple expression of EII for the case of a rectangular conductor with appre-

ciable ratio of thickness to width is to divide the conductor into segments as in Fig.

2.3.  At low frequency the rectangular conductor is segmented into four square cor-

ners and two flat rectangular sections as in Fig. 2.3(a).  At high frequency, current

crowds towards the surface of the conductor to within a few skin depths, and the po-
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sition dependence of the surface impedance is confined within above a 3δ  distance

from the corner.  Therefore, as shown in Fig. 2.3(b) at high frequency the rectangular

y

x0

t

t/2 w

Zeii Zeii

t/2

(a) At frequencies of t / 2 < 3δ .
y

xw0

t

3δ

Zeii

3δ

Zeii

(b) At frequencies of t / 2 > 3δ . A rectangular conduc-

tor is modeled by a rectangular pipe with thickness of

3δ .

Figure 2.3:  Transmission line model for the effective internal impedance.  A rectan-

gular conductor is segmented into flat rectangles and four squares.  The effective in-

ternal impedance is calculated from transverse resonance method and telegraphist's

equations.
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wn

hn

Zeii

d

Figure 2.4:  Each right-angled triangle is segmented into several isosceles triangles to

take care of current crowding towards the corner.  Effective internal impedance is cal-

culated from transverse resonance method and telegraphist's equations of non-uniform

transmission lines.

conductor is modeled by a hollow rectangular pipe and segmented into four square

corners and four flat rectangular sections.  By symmetry the square corner is divided

into two right-angled triangles.

For the central flat rectangular sections, EII is given by (2.4) where t / 2  can be

replaced by 3δ  if t / 2  > 3δ .  As frequency goes up current crowds more towards

corners and to capture this effect a triangular section is divided into N  isosceles as

shown in Fig. 2.4.  For each isosceles  hn  is used as the "thickness" of that segment,

which is the distance from the center of the base to the opposite corner.  And the

width of that segment is given in order to trace a wave propagation from the base to

the opposite corner.  For the nth  ( n=0, 1, 2,..., N −1 ) segment, the height hn  is

given by

hn = d 1 + n + 0.5
N







2

(2.15)
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and the width wn by

wn = hn

2
1

N + (n + 0.5)
n

N

+ 1

N + (n + 0.5)
n + 1

N

















(2.16)

And the surface impedance is approximated by applying transverse resonance and

non-uniform transmission line analysis.  The total input impedance is obtained for a

triangular transmission line with width wn at the input end, plate separation of unit

distance and length hn , and filled with a uniform conducting material of conductivity

σ .  Therefore, EII is given through normalizing the input impedance of the triangular

transmission line by the width of the original base d / N

Zeii
n =

j jωµσ
σ

J0 j jωµσhn( )
J1 j jωµσhn( )

d

wnN
, (2.17)

where J0  and J1 are the Bessel functions of the first kind.

2.3 Comparisons of Three Effective Internal Impedance Models

Three EII models are compared with each other and to the surface impedance for

a rectangular conductor 20 µm wide and 4 µm thick in Fig. 2.5, where all models and

the surface impedance are normalized by the surface impedance of a flat conductor

(2.4).  In Fig. 2.5(a) at the frequency such that the skin depth δ = 5t , the plane wave

model gives an almost constant EII over each surface, but scaled relative to each other

by the ratio of width to thickness (as seen in (2.9) and (2.10)).  This model deviates

the most among three models from the actual surface impedance.  The modified plane

wave model gives a constant EII for all sides and is fairly close to the surface

impedance except near the corners.  The transmission line model well approximates
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the surface impedance at corners of the wide side, but is off from the surface

impedance on the other corner.  Figure 2.5(b) shows the comparison at the frequency

such that δ = t / 2.  Unlike the case of low frequency both plane wave models

asymptotically approach the surface impedance.  And transmission line model also

approaches the surface impedance with some deviation near the corners.  Beyond a

distance of 3δ  from the corner all models are the same as the surface impedance of

flat wide conductors.  As shown in Fig. 2.5(c) at a high frequency such that δ = t / 6

all models follow the surface impedance.  The plane wave model and modified plane

wave model become identical and get closer to the surface impedance, and transmis-

sion line model is also close to the surface impedance.  Again, beyond a distance of

3δ  from the corner all models and the actual surface impedance give a constant

value.  Thus over the whole frequency band the modified plane wave model gives an

EII closest to the surface impedance, the transmission line model also gives an EII

quite close to the surface impedance, and the plane wave model gives an EII that has

the greatest error at low frequency, but becomes identical to the modified plane wave

model at high frequency.

Even though the EII models tend to approximate the surface impedance, this is

not actually a necessary condition.  The usefulness of EII in analyzing the lossy

transmission line lies in the accuracy of the line parameters, i.e., resistance and induc-

tance.  At high frequency all models approach the surface impedance and the

Leontovich boundary condition is valid.  Therefore, as shown in Fig. 2.5(c) all models

can substitute for the surface impedance and be used as a SIBC.  At low frequency all

models and the surface impedance give the right DC resistance.  Another metric to

measure the usefulness of an EII model is the low frequency inductance, which con
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Figure 2.5:  Comparison between three effective internal impedance models and the

surface impedance for a rectangular conductor at δ = 5t , δ = t / 2, and δ = t / 6 ( 20

µm wide, and 4 µm thick ).  A(solid line): transmission line model; B(dashed line):

modified plane wave model; C(dotted line): plane wave model; D(8): the surface

impedance calculated by the volume filament method [24].
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sists of internal inductance and external inductance.  To calculate the  inductance the

EII must be incorporated with the external field solvers as a SIBC.  Among various

formulations describing electromagnetic fields, the current integral equation has suc-

cessfully been combined with EII to evaluate the series impedance of the lossy

transmission lines.  This approach is called the surface ribbon method [21, 22] and

will be explained in Chapter Four.  At low frequency EII determines the current dis-

tribution in the surface ribbon method, and affects internal inductance and external

inductance.  In the surface ribbon method the internal inductance is given by

Lint = lim
ω→0

1

I 2
1
ω

Im Zeii ω( ){ }
S∫ Js

2
dl − A

→
× H*

in
→





S∫ ⋅ n̂dl











(2.18)

where I  is the total current, S  is the surface of the conductor, Js  the surface current,

A
→

 the magnetic vector potential, H
→

in  the magnetic field intensity on the inner surface

of the conductor, and n̂  normal outward unit vector.  In the above equation the sec-

ond term is small compared to the first term in case of an isolated conductor, which is

used to approximate the magnetic energy stored inside the conductor together with

EII.  It also becomes negligible as width to thickness ratio increases.  Figure 2.6

shows the comparison of normalized DC internal inductance and normalized total DC

inductance with different EII models.  For the convenience the inductance as ω → 0

is defined as "DC inductance".  These are also compared to a more rigorous quasi-

TEM volume filament technique [24], where the internal inductance is calculated

using

Lint = 1

I 2 µo
vc
∫ H ⋅

→
H*
→

dv = Ltotal − A
→

× H*
→





S∫ ⋅ n̂dl , (2.19)
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where vc  is the volume inside the conductor.  For a square conductor all models give

accurate internal inductance and total inductance.  But as the ratio of width to thick-

ness increases, the internal inductance with the plane wave model diverges, causing a

large amount of error in the total DC inductance.  The modified plane wave model

and transmission line model give an internal inductance close to the internal induc-

tance calculated by the volume filament method over the range of width to thickness

ratio shown (less than 1% error from the result of the volume filament method).
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Figure 2.6:  Comparison of DC internal inductance and total DC inductance with dif-

ferent effective internal impedance models in conjunction with the surface ribbon

method [21, 22] for w/h ratio of 1 to 100.  These are compared to each other and the

results of the volume filament method [24].  A(solid line): volume filament method;

B(dotted line): transmission line model; C(dashed line): plane wave model; D(dot-

and-dashed line): modified plane wave model.

In summary, at low frequency the modified plane wave model and transmission

line model both give accurate resistance and inductance from square to wide rect-
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angular conductors when used in conjunction with the surface ribbon method.  And at

high frequency all models approach the correct surface impedance.

2.4 Application of Effective Internal Impedance in Lossy

Transmission Line Analysis

For lossy transmission lines, fast and efficient methods for resistance and induc-

tance computation can be obtained in conjunction with the use of an EII.  Among

various electromagnetic field solvers, BEM is examined here using EII as a SIBC.

Poor results of BEM using EII as a SIBC at low frequency force the use of external

field solvers with EII, such as surface ribbon method [21, 22], which will be dis-

cussed in Chapter Four.

2.4.1 Boundary Element Method with the Standard Impedance Boundary

Condition

BEM is widely used in analyzing eddy current problems and transmission line

problems.  Also in BEM SIBC eliminates the conducting region, reduces the number

of unknowns, and makes the problem simpler.  There have been several efforts apply-

ing SIBC in BEM for eddy current problems, but many of them are valid only at high

frequency, although some surface impedance models were extended to mid frequency

range.  If the proposed EII could be used for SIBC, then SIBC could be extended to

low frequency regime.

From Maxwell's equations and Green's theorem, the coupled integral equations

[25] are set up at the surface of the conductor;

d ′r
Γ∫ Go

1 r, ′r( ) jωµHt ′r( ) − d ′r
Γ∫ Go

2 r, ′r( ) − 0.5δ r − ′r( )[ ] Ez ′r( ) + ∇Φ( ) = 0
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d ′r
Γ∫ Gc

1 r, ′r( ) jωµHt ′r( ) − d ′r
Γ∫ Gc

2 r, ′r( ) + 0.5δ r − ′r( )[ ]Ez ′r( ) = 0         (2.20)

d ′r
Γ∫ Ht ′r( ) = Iq ,

where

Go
1(r, ′r ) = − 1

2π
ln r − ′r

Gc
1(r, ′r ) = − j

4
H0

(2) γ r − ′r( )

and Γ  is the surface of the conductor, Go
2(r, ′r )  and Gc

2(r, ′r )  are the derivatives of

Go
1(r, ′r ) and Gc

1(r, ′r ) with respect to normal outward unit vector, Φ  is the applied

potential, Iq  is total current in the  qth conductor, H0
(2) the Hankel function of the

second kind, and δ (r − ′r )  is the Dirac delta function.  By applying IBC equation

(2.20) is simplified to

d ′r jωµGo
1(r, ′r ) − Zs ( ′r ) Go

2(r, ′r ) − 0.5δ (r − ′r )[ ]{ }Ht ( ′r )
Γ∫

− d ′r Go
2(r, ′r ) − 0.5δ (r − ′r )[ ]∇Φ = 0

Γ∫         (2.21)

d ′r Ht ( ′r ) = Iq
Γ∫ .

In addition to reducing the number of unknowns by half, SIBC avoids the computa-

tion of the Bessel functions.

As shown in Fig. 2.7(a) in the case of a circular conductor BEM (full BEM) and

BEM combined with SIBC (surface BEM) give almost identical resistance and induc-

tance over the entire frequency range, except low frequency inductance calculated

using full BEM.  Full BEM has numerical difficulties in calculating low frequency
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inductance, when the current is uniform and the normal derivative becomes small.

The surface impedance of a circular conductor is given by

Zs =
j jωµσ

σ
J0 jr jωµσ( )
J1 jr jωµσ( ) ,         (2.22)

where r is the radius of the circular conductor.  For twin circular conductors in

Fig.2.7(b) full BEM and surface BEM using two surface impedance models as the

SIBC are compared.  The surface impedance of an isolated circular conductor, (2.22),

and the actual surface impedance calculated using BEM when the twin circular con-

ductors are closely coupled are used as SIBC.  Using the actual surface impedance

surface BEM and full BEM give the same results.  And using the surface impedance

of an isolated circular conductor high frequency resistance and inductance match well

to full BEM, but low frequency inductance agreement is poor: compared to full BEM,

the error is about 17%.  Also low and mid frequency resistance agreement is poor,

with about 12% deviation from full BEM.

As shown in Fig. 2.8(a) in the case of a single rectangular conductor BEM com-

bined with the surface impedance calculated by the volume filament technique, EII of

the transmission line model, and EII of the modified plane wave model give fairly ac-

curate resistance and inductance over the entire frequency range.  High frequency re-

sistance and inductance approach the results of BEM. But mid frequency resistance

using the transmission line model for EII deviates by 11%, while low frequency in-

ductance is calculated with less than 1% error.  For the coupled conductors in Fig.

2.8(b) high frequency resistance and inductance match well to full BEM, and surface

BEM using the actual surface impedance give the same results to full BEM for all fre-

quency range.  But low frequency inductance agreement is poor, when EII models are
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Figure 2.7:  Comparison of resistance and inductance between boundary element

method without the standard impedance boundary condition (full BEM) and boundary

element method with the standard impedance boundary condition (surface BEM).

A(8): BEM without SIBC; B(solid line): BEM with the surface impedance of isolated

conductor as SIBC; C(dashed line): BEM with the surface impedance of twin coupled

conductors as SIBC, which is calculated by the boundary element method. The

conductor surface is divided into 90 uniform elements. The conductivity is 5.8 ×107

[S/m].
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Figure 2.8:  Comparison of resistance and inductance between boundary element

method without the standard impedance boundary condition (full BEM) and boundary

element method with the standard impedance boundary condition (surface BEM).

A(8): BEM without SIBC; B(solid line): BEM with transmission line model as SIBC;

C(dashed line): BEM with modified plane wave model as SIBC; D(dotted line): BEM

with the surface impedance as SIBC, which is calculated by the volume filament

method [24]. The conductivity is 5.8 ×107 [S/m].
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Problem Method Number of
unknowns

CPU time[sec/frequency]

Assembling Solving

BEM

BEM/SIBC

BEM

BEM/SIBC

145

290

145

Single
Conductor

Twin
Conductor

62.3

0.05

126.12

1.19

0.15

6.88

1.19

73

0.23

Table 2.1:  Comparison of run time on an IBM RISC 6000 for boundary element

method with the standard impedance boundary condition (SIBC) and without the

standard impedance boundary condition (SIBC).  BEM with SIBC is at least 100

times faster than BEM in assembling a matrix, and at least 5 times in solving the ma-

trix with gaussian elimination algorithm.

used: compared to BEM, the error is 58% and 53% for transmission line model and

modified plane wave model, respectively.  Mid frequency resistance agreement is also

poor when EII models are used, with about 30% deviation from full BEM.  Table 2.1

shows the gain using SIBC in computational time on an IBM RISC 6000.

2.4.2 Boundary Element Method assuming Impedance Sheet carrying Surface

Current on the Conductor Surface

BEM using SIBC converts a multi-media problem to a one medium, exterior

problem, where the surface impedance is used as a relating factor between tangential

components of exterior magnetic and electric fields, and the conductor interior is ex-

cluded from the domain to be solved.  But accurately modeling the surface impedance

becomes complicated at low and mid frequency especially for multi-conductor lines.

Thus, the usefulness of SIBC is limited at low and mid frequency.
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Instead of developing higher order IBC models to capture the non-localized fields

at low frequency, a conductor is modeled as an impedance sheet on the conductor

surface.  The surface current is defined and the conductor interior is regarded as

exterior material.  Therefore, the coupled integral equations, (2.20), are modified to

d ′r Go
1

Γ∫ r, ′r( ) jωµHt
out ′r( ) − d ′r

Γ∫ Go
2 r, ′r( ) − 0.5δ r − ′r( )[ ] Ez

out ′r( ) + ∇Φ( ) = 0

d ′r Go
1

Γ∫ r, ′r( ) jωµHt
in ′r( ) − d ′r

Γ∫ Go
2 r, ′r( ) + 0.5δ r − ′r( )[ ] Ez

in ′r( ) + ∇Φ( ) = 0. (2.29)

The electric fields are continuous at the impedance sheet.  EII is used as relating fac-

tor between tangential electric field and the difference of tangential magnetic fields in

and out of the impedance sheet as

Zeii = Ez

Ht
out − Ht

in = Ez

Js
.         (2.30)

By applying above condition and for three-dimensional, free space Green's function,

the integral equation (2.29) becomes

Zeii (r)Js (r) + jωµ
4π

d ′r
Γ∫

Js ( ′r )
r − ′r

= −∇Φ         (2.31)

This equation is the same formula of the surface ribbon method (SRM), one of the

successful techniques using EII to accurately and efficiently calculate frequency de-

pendent resistance and inductance of lossy transmission lines.  This approach is ex-

plained in Chapter Four.

2.4.3 Other External Field Solvers

As shown above BEM using SIBC is not a proper approach to evaluate the series
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impedance of lossy transmission lines at low and mid frequency.  Many other meth-

ods, such as the finite element method (FEM), the finite difference time domain

method (FDTD), etc., would give the same results, because all of these would use EII

as the standard impedance boundary condition (SIBC) and SIBC eliminates the con-

ductor interior from the domain of problem.  However, if the conductor is modeled as

an impedance sheet on the conductor surface, the conductor interior is replaced as the

conductor exterior, and the conductor interior is included in the domain of problem,

then those methods would give accurate results using appropriate impedance factors.

If EII could be used for characterizing the conductor interior, it would save a lot of

computational time without loss in accuracy for the series impedance calculation of

lossy transmission lines.  The following chapters will explain the conformal mapping

technique and current ribbon method as the external field solvers incorporated with

EII.


