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Chapter 4

Surface Ribbon Method

For high-speed digital circuits the frequency spectrum spans from DC to high

frequency where the skin and proximity effects occur, and for monolithic microwave

integrated circuits (MMIC) the dimensions of the structures are shrinking.  A unified

methodology for evaluating parameters of interconnects and packages for wide range

of frequencies would be desirable.  Where the cross-sectional dimensions of struc-

tures reside within the wavelength of the highest significant frequency in the driving

signal, the quasi-TEM approximation of the signal propagation should be valid.

There have been many techniques developed for evaluating frequency-dependent re-

sistance and inductance such as the finite element method (FEM) [49, 50], the bound-

ary element method (BEM) [25, 51], the integral equation method (IEM) and the

spectral domain method (SDM) [36, 52-58], etc.

As shown in previous chapters, the effective internal impedance (EII) approach

can significantly reduce the computational load, but the EII approach should be ap-

propriately incorporated with the field solvers.  Recently, EII has been combined with

the current integral equation [21, 22], and it has successfully been applied to calculat-

ing the conductor loss for twin and coplanar conductors.  This technique is called the

surface ribbon method (SRM) because it requires discretization only on the conductor

surface instead of across the conductor cross-section, as in the volume filament

method (VFM) [24], where the EII is used to represent resistance and internal induc-

tance of the conductor.  In this chapter, the accuracy of the SRM will be examined

through various examples, such as single and twin conductors, a microstrip line, and
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asymmetric striplines, and SRM will be explained from an electromagnetic point of

view compared to the surface equivalent theorem.  The SRM will be compared to

previous work using standard impedance boundary conditions (SIBC) in conjunction

with the integral equation method (IEM), or the spectral domain method (SDM).  In

addition, minimal discretization and accuracy will be examined, and for an example

circuit the signal degradation and crosstalk will be evaluated to see the impacts of the

skin and proximity effects on coupled lossy transmission lines.

4.1 Integral Equation Method using Standard Impedance Boundary

Conditions and Volume Filament Method

There are various rigorous numerical techniques for characterizing lossy trans-

mission lines, which are based on either the quasi-static assumption or a full-wave de-

scription.  The FEM [49, 50] needs discretization of the entire domain to calculate

electric and magnetic fields inside as well as outside of the conductor.  To accurately

calculate the fields, the size of the discretization should be sufficiently smaller than

the wavelength inside of the conductor.  And FEM is not so versatile for handling

open boundary problems without approximations or the help of other techniques [49].

As shown in Chapter Two, BEM [25, 51] can be used without the limits of FEM, but

it still requires considerable time in forming a matrix to be solved and it becomes in-

accurate for inductance calculation at low frequency.  The full-wave SDM [36, 52] or

IEM can be utilized for characterizing the lossy transmission lines, but those are nu-

merically expensive and complicated due to dyadic Green's functions for layered

structures.  Under the quasi-static assumption, the VFM [24] avoids the need of dis-

cretization outside of the conductor and complicated Green's functions, but it still

needs fine discretization inside of the conductor as in FEM, and, therefore, it becomes
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numerically intensive at high frequencies.  In this sections, previous work on IEM and

SDM are briefly reviewed which exploits modified SIBC or complicated dyadic

Green's functions, and the classical technique of VFM is also summarized, from

which SRM stems.
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Figure 4.1:  Modeling a lossy thick rectangular conductor in the integral equation

method (IEM).  (a) configuration of a thick rectangular conductor, (b) equivalent one

thin plate with the surface impedance of a flat conductor, (c) equivalent two thin

plates with the transfer impedance boundary condition.

4.1.1 Integral Equation Method and Spectral Domain Method

The integral equation method (IEM) and the spectral domain method (SDM)

have been widely used to evaluate the propagation constant for various transmission

lines at high frequency, where the latter transforms integral equations defined on the

surface of the conductors into the spectral domain through Fourier transformations.

As the finite thickness and finite conductivity of the conductor become important and

the conductor loss is more significant the conventional IEM and SDM have been

modified to evaluate the attenuation constant as well as the propagation constant.  In

reference [36, 52] the full-wave SDM was developed by deriving complicated dyadic

Green's functions for planar stratified media where the lossy conductors are embed-

ded.  This approach is rigorous in that it faithfully describes the complex propagation
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constant at low frequency as well as at high frequency, and it does not need a simpli-

fied model for the conductor geometries, and, therefore, takes care of edges as well as

finite thickness of the conductor.

As in references [53-58], the full-wave or quasi-static integral equation could be

combined with SIBC either in the space domain or in the spectral domain.  The SIBC

is applied to the equivalent infinitesimally thin impedance surface which replaces the

lossy, thick conductor strips [53].  Because modeling the surface impedance becomes

complicated at low frequency, SDM or IEM should be altered to consider low fre-

quency behavior by defining the equivalent electric and magnetic currents on the sur-

face of the conductor or by modifying SIBC, as explained in [54].  In [55] the transfer

impedance boundary condition or the impedance matrix  (2.5) is defined on both top

and bottom plates, equivalent thin strip replaces the thick strip of Fig. 4.1(a) as shown

in Fig. 4.1(b), equivalent electric field is defined by the weighted average of the tan-

gential electric field, and equivalent current is equated to sum of surface current on

both top and bottom surfaces of the strip.  And in [56] the transfer impedance bound-

ary condition is used under the assumption of a quasi-TEM mode, and two thin plates

equivalently replace the thick conductor as shown in Fig. 4.1(c) and one thin plate

replace the thick ground.  As further approximations, in [57, 58] the thick conductor

strip is equivalently replaced by a thin strip at the bottom of the conductor and the

single-valued surface impedance of a thin flat conductor (2.4) is used to evaluate the

conductor loss as well as the propagation constant.

Full-wave SDM or IEM with complicated dyadic Green's functions gives accu-

rate results for low frequency as well as high frequency, but it requires intensive nu-

merical work and complicated integral equations.  Full-wave or quasi-TEM SDM or
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IEM with the modified SIBC reduces the numerical burden and gives reasonable re-

sults.  But these do not accurately capture the complex propagation constant, espe-

cially when the thickness of the conductor becomes appreciable compared to the

width of the conductor, because the conductor is simplified into single or two plates

and the edges of the conductor are ignored.

4.1.2 Volume Filament Method

Several approaches using the volume current integral equations have been uti-

lized to evaluate frequency dependent resistance and inductance of lossy transmission

lines [24, 57-64].  These techniques use the current density inside of the conductor as

the state variables under the magneto-quasi-static assumption [65], i.e., the displace-

ment current is negligible.  The magnetic vector potential A
→

 is related to the current

density J
→

 by

A
→

(r) = µ
4π

J
→

( ′r )
r − ′r′V∫ d ′v , (4.1)

where ′V  is the inside of the conductor, the magnetic vector potential and the mag-

netic field are given by µ H
→

= ∇ × A
→

, and the Coulomb gauge,  ∇ ⋅ A
→

= 0 , is used.

From Faraday's induction law and in sinusoidal steady state, the electric field and the

magnetic vector potential is written as

E
→

= − jω A
→

− ∇φ (4.2)

where φ  is the scalar potential.  And from the Ohm's Law the current density and the

electric field are related by

J
→

= σ E
→

. (4.3)
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And (4.2) yields the current integral equation inside the conductor through substitut-

ing variables by (4.1) and (4.3)

J
→

(r)
σ

+ jωµ
4π

J
→

( ′r )
r − ′r′V∫ d ′v = −∇φ . (4.4)
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Figure 4.2:  Discretization of the conductor inside for the use of the volume filament

method (VFM).  The conductor is segmented into small rectangular filaments, and the

current on each filament is approximated with appropriate basis functions.

To account for the skin and proximity effects, which cause non-uniform current dis-

tribution inside of the conductor, the conductor is segmented into small elements, as

shown in Fig. 4.2, and the current density is expanded by appropriate basis functions.

Using the method of moments and pulse basis functions

J
→

(r) ≅ Ik

akk=1

N
∑ îk , (4.5)

where N  is the total number of segments, Ik  is the current of the filament k , ak  is

the area of the filament k , and îk  is the unit vector of the current.  The above equation

is converted to
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lm
σam







Im + jωµ
4π

1
aman

îm ⋅ în
r − ′r

d ′v dv
′Vn

∫Vm
∫











n=1

N

∑ In = 1
am

φ1 − φ2( )
Vm
∫ dv , (4.6)

where lm is the length of the filament m , φ1 − φ2  is the potential difference applied

between the ends of the filament m .  The double integral of the above equation can

be carried out using the closed form in [24] for infinitely long filaments or in [66] for

finite length filaments in case of rectangular segmentation of the conductor.  In matrix

form, (4.6) becomes

R[ ] + jω L[ ]( ) I[ ] = V[ ]. (4.7)

And through appropriate matrix manipulation or solving, the series impedances of the

multi-conductor lossy transmission lines are calculated.

This volume current integral equation approach is called Weeks' method, or the

volume filament method (VFM).  This approach can be formulated to handle

obliquely placed multi-conductors as in [61] and afford three dimensional structure

such as bend and ground plane as in [60], which is called the partial element equiva-

lent circuits (PEEC) approach.  As frequency goes up, the current crowds towards the

surface and edges of the conductor.  To accurately account for the profile of the cur-

rent distribution, the size of the discretization should be sufficiently smaller than the

skin depth.  This makes  the VFM numerically intensive at high frequencies.  The

computational load can be reduced by using adaptive meshing schemes as in [62, 64],

cleverly developed iterative matrix solvers as in [64], or higher order of basis func-

tions [63].  But the fine discretization is unavoidable at high frequency even though

these approaches can save computation time.  This problem can be overcome by
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combining the current integral equation and the effective internal impedance (EII).

The next section will deal with this recently proposed approach [21, 22].

4.2 Surface Ribbon Method

The volume current integral equation can be combined with the SIBC at high fre-

quency like other numerical techniques such as BEM, FEM, SDM, etc.  But at low

frequency, higher order models for the surface impedance are required because the

electric and magnetic fields do not locally relate to each other and the surface

impedance at any point on the surface of the conductor becomes dependent on the

global geometries of the conductors.  But instead of using the Leontovich boundary

condition, which relates external, tangential electric and magnetic fields at the con-

ductor surface and removes the conductor interior from the domain of problem, the

conductor can be modeled as a thin impedance sheet at the conductor surface, the

conductor interior replaced with the exterior material, and the conductor interior in-

cluded in the domain of problem.  The conductor interior is represented at this sheet

using EII, which relates the tangential electric field and the equivalent surface current

density.  The current integral equation can avoid the discretization of the conductor

interior and, therefore, reduce the computational load fundamentally.

Ez = ZeiiJs , (4.8)

where Ez  is the electric field parallel to the current flowing direction z , Zeii  is the

EII, and Js  is the equivalent surface current.  This equivalent surface current Js  can

be expressed by the tangential magnetic fields

Js = Ht
+ − Ht

−
, (4.9)
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where Ht
+  and Ht

−  are the tangential magnetic field outside and inside of the conduc-

tor, respectively.  As frequency goes up Ht
−  is vanishing and Zeii  is approaching the

surface impedance Zs , and the relation of (4.8) starts to satisfy the Leontovich

boundary condition.

Using the equivalent surface current on the surface of the conductor instead of

volume current inside of the conductor and the condition of (4.8) instead of the Ohm's

Law, the volume current integral equation is substituted by the equivalent surface cur-

rent integral equation as

Z
→

eii r( ) ⋅ J
→

s r( ) + jωµ
4π

J
→

s ′r( )
r − ′r′S∫ d ′s = −∇Φ . (4.10)
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Figure 4.3:  Discretization of the conductor surface for the use of the surface ribbon

method (SRM).  The conductor surface is segmented into small ribbons, the effective

internal impedance (EII) is assigned at each ribbon, and the current on each ribbon is

approximated with appropriate basis functions.

And as in VFM, the non-uniform surface current density at each segment, as

shown in Fig. 4.3, on the conductor surface can be expanded using appropriate basis
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functions.  The pulse basis function can be used to represent the surface current den-

sity at each ribbon as follows

Js

→
(r) ≅ Ik

wkk=1

N
∑ îk , (4.11)

where wk  is the width of the filament k .  By testing with the pulse basis function

through the method of moments the surface current integral equation (4.10) gives fol-

lowing equation

Z̃eii
lm
wm







Im + jωµ
4π

1
wmwn

îm ⋅ în
r − ′r

d ′s ds
′Sn

∫Sm
∫











n=1

N

∑ In = 1
wm

φ1 − φ2( )
Sm
∫ ds ,   (4.12)

where Z̃eii  is the weighted-averaged effective internal impedance, lm is the length of

the ribbon m , and Im  and In  are the surface current on the ribbon m  and n , respec-

tively.  The double surface integral can be easily calculated by using the simple log-

arithmic function in [27] for infinitely long ribbons or the logarithmic and inverse

trigonometric function in [66] for a ribbon of finite length.  The above equation can

be represented by the following matrix form

Z̃eii[ ] + jω L[ ]( ) I[ ] = V[ ] (4.13)

where the real term of EII represents resistance, and the imaginary term of EII and the

second term are used to give inductance.

This surface current integral equation approach combined with EII is called the

surface ribbon method (SRM).  Unlike VFM, by using EII SRM gets rid of the con-

ductor interior from the domain to be solved and, therefore, requires discretization

only on the surface of the conductor.  The following sub-sections will explain the
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scheme of discretization, the weighted averaged effective internal impedance, and the

electromagnetics of SRM compared to VFM and the surface equivalent theorem, re-

spectively.

7 ribbons with the ratio of 1.5

A

B

Figure 4.4:  Non-uniform discretization and the weighted-averaged effective internal

impedance.  The conductor surface is sequentially divided into non-equal width seg-

ments with a certain width ratio and the weighted-averaged effective internal

impedance (EII) is assigned at each ribbon.  A(solid line): position-dependent effec-

tive internal impedance; B(dotted line): weighted-averaged effective internal

impedance.

4.2.1 Discretization and Weighted-averaged Effective Internal Impedance

Since the SRM represents the conductor interior at the conductor surface, the cur-

rent is defined only on the conductor surface.  The surface current is mainly deter-

mined by the resistive term of EII at low frequency and by the skin and proximity ef-

fects at high frequency, and, therefore, it becomes non-uniform due to the position-

dependent EII at low frequency and due to the current crowding towards the corners

at high frequency.  In order to properly capture the non-uniform surface current, dis-

cretization on the conductor surface is required, as shown in Fig. 4.3.  To reduce the

number of unknowns an adaptive meshing scheme can be used as in VFM [62, 64].
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The conductor surface is sequentially divided into non-equal width segments with a

certain ratio, shown in Fig. 4.4.  In VFM a skin depth needs to be divided into several

segments in order to capture the exponentially decreasing current profile.  The surface

current in SRM does not change as quickly as the current of the conductor interior in

VFM.  Thus, in SRM the smallest segment is chosen to be a skin depth or less de-

pending on the highest frequency of interest, the number of segments, and the ratio

between segments.

The surface current is expanded by the pulse basis function, (4.11), and a con-

stant surface current is defined at each ribbon.  By testing with the pulse basis func-

tion the surface current integral equation gives the matrix equation (4.12).  In this

process the position-dependent EII is also tested by the pulse basis function, and a

singled-valued, weighted-averaged EII is defined at each ribbon, as shown in Fig. 4.4,

thus producing a step-wise constant EII

4.2.2 Internal Inductance and External Inductance

From the Poynting theorem with the assumptions of non-radiation and quasi-

static fields, the following equation is derived for the volume current integral equation

- ∇φ ⋅ J∗→

Vc
∫ dv = 1

σ
J
→

Vc
∫ ⋅ J∗→

dv + jω A
→

Vc
∫ ⋅ J∗→

dv , (4.14)

where Vc  is the conductor interior, Vout  is the conductor exterior, the left-hand side of

the equation is the power applied, the first term of the right-hand side is the ohmic

loss, and the second term corresponds to the inductance as

A
→

Vc
∫ ⋅ J∗→

dv = µ H
→

Vc
∫ ⋅ H∗→

dv + µ H
→

Vout
∫ ⋅ H∗→

dv = Lint + Lext( ) I 2. (4.15)
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This can be decomposed into the internal inductance and the external inductance as

Lint = µ
I 2 H

→

Vc
∫ ⋅ H∗→

dv = 1

I 2 A
→

Vc
∫ ⋅ J∗→

dv − 1

I 2 A
→

× H∗→





Sc
∫ ⋅ n̂ds   (4.16)

Lext = µ
I 2 H

→

Vout
∫ ⋅ H∗→

dv = 1

I 2 A
→

× H∗→





Sc
∫ ⋅ n̂ds

where Sc  is the conductor surface and n̂  is outward normal unit vector on the conduc-

tor surface.

Also the Poynting theorem gives the following relationship for the surface cur-

rent integral equation

- ∇φ ⋅ J∗→

Sc
∫ ds = Zeii J

→

Sc
∫ ⋅ J∗→

ds + jω A
→

Sc
∫ ⋅ J∗→

ds , (4.17)

where Sc  is the conductor surface.  In the right-hand side of above equation, the

ohmic loss is given by

R = 1

I 2 Re Zeii{ } J
→

Sc
∫ ⋅ J∗→

ds (4.18)

and the internal inductance and the external inductance are arranged as follows

         Lint = 1

ω I 2 Im Zeii{ } J
→

Sc
∫ ⋅ J∗→

ds − 1

I 2 A
→

× H∗→
in







Sc
∫ ⋅ n̂ds          (4.19)

         Lext = 1

I 2 A
→

× H∗→
out







Sc
∫ ⋅ n̂ds ,

where H∗→
in  and H∗→

out  are the magnetic field intensity inside and outside of the con-

ductor surface, respectively.  And the second term of Lint  and Lext  are summed to

correspond to the second term of the right-hand side of (4.17).
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1

I 2 A
→

× H∗→
out − H∗→

in










Sc

∫ ⋅ n̂ds = 1

I 2 A
→

Sc
∫ ⋅ J∗→

ds (4.20)

Therefore, the real term of EII gives the resistance of the lossy transmission lines, the

sum of the imaginary term of EII and the magnetic energy stored inside of the contour

surrounded by ribbons corresponds to the internal inductance, and the magnetic en-

ergy stored outside of the conductor corresponds to the external inductance.
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Figure 4.5:  Comparison of the actual geometry and the equivalent model for the sur-

face ribbon method (SRM).  (a) Actual geometry with the descriptions of fields and

material properties, (b) At low frequency equivalent model for the surface ribbon

method (SRM) with the descriptions of fields and material properties, (c) At high fre-

quency equivalent model for the surface ribbon method (SRM) with the descriptions

of fields and material properties.
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4.2.3 High and Low Frequency Behavior of Surface Ribbon Method

The conductor in Fig. 4.5(a) is modeled as the thin cylindrical shell shown in Fig.

4.5(b) and (c).  At high frequency as shown in Fig. 4.5(c) the electric and magnetic

fields outside of the conductor approach to those of original domain because the EII

approaches the surface impedance, the magnetic field inside of the conductor starts to

vanish, the relation between the electric and magnetic fields is localized, and, hence,

the Leontovich boundary conditions begin to be satisfied.  Therefore, SRM at high

frequency just satisfies the surface equivalent theorem [67].

At low frequency, as shown in Fig. 4.5(b) the electric and magnetic fields are not

the same as the original problem not only inside the conductor but also outside the

conductor.  Therefore, it does not satisfy the surface equivalent theorem. But at low

frequency the current distribution is determined by the resistive term of the

impedance. Hence, the series impedance of lossy transmission lines is calculated with

appropriate definition of EII, which gives DC resistance and approximately yields the

current distribution giving accurate internal and external inductance at low frequency

and approaches to SIBC at high frequency.  And as shown in Fig. 2.6, the modified

plane wave model and the transmission line model for the EII give accurate internal

and external inductances for a wide range of width to thickness ratio for rectangular

conductors at low frequency.

4.2.4 Surface Ribbon Method vs. Integral Equation Method using Standard

Impedance Boundary Condition

Under the quasi-static assumption, the integral equations using modified SIBC

[56-58] are the same form as (4.17).  Both exploit free space Green's function for non-
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magnetic media and define the surface current on the conductor surface.  The only

difference is that IEM approximates the conductor strip as one or two plates and uses

the impedance matrix or the surface impedance of the flat conductor as SIBC, while

the SRM models the conductor as a thin cylindrical shell preserving the original shape

and the single-valued EII all over the conductor surface.  Therefore, SRM takes care

of the edges and corners of the conductor, unlike IEM, and can give accurate results

regardless of size and shape of the conductor.

4.3 Examples

Several examples have been considered to determine the accuracy and efficiency

of SRM.  At first, single and twin circular and rectangular conductors are examined.

The modified plane wave model and the transmission line model for EII are compared

and the better results are obtained using the transmission line model; the illustrated

examples make use of the transmission line model unless otherwise noted. And, as

shown in Chapter Three, the series impedance is calculated in the case of a V-shaped

conductor-backed coplanar waveguide (VGCPW) and microstrip lines.  Minimal

segmentation is considered for asymmetric striplines, and previous work using the

IEM combined with SIBC and SRM are compared for a microstrip line.  To verify the

accuracy of the results and efficiency, SRM is compared results of rigorous VFM [24]

and BEM [25].

4.3.1 Single and Twin Circular Conductors

As shown in Fig. 4.6, resistance and inductance have been calculated by SRM

and BEM, and compared with each other for a single circular conductor and twin cir-

cular conductors of 1mm radius, 0.2 mm gap, and conductivity 5.8 ×107 [S/m].  For
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the single circular conductor of Fig. 4.6(a), resistance and inductance from the SRM

are almost identical to the results of BEM for all frequencies considered.  For closely

coupled parallel twin circular conductors, shown in Fig. 4.6(b), resistance and induc-

tance of SRM match well to results of BEM at high and low frequencies within a 2%

error, and at mid frequency the resistance and inductance are off 7% and 6%, respec-

tively.  For these examples the conductor is uniformly segmented with 90 segments.

4.3.2 Single and Twin Rectangular Conductors

As shown in Fig. 4.7, resistance and inductance have been calculated by SRM,

VFM, and BEM, and compared with each other for a single rectangular conductor and

twin rectangular conductors 20 µm wide, 4 µm thick, 4 µm gap, and conductivity

5.8 ×107 [S/m].  For single rectangular conductor of Fig. 4.7(a), resistance and induc-

tance from the SRM using the transmission line model (TLM) for EII agree with the

results of VFM and BEM within a deviation of 2% for resistance and 0.1% for induc-

tance for all frequencies considered.  The low frequency inductance calulated by

SRM using the modified plane wave model (MPWM) deviates about 0.3% from the

others.  For closely coupled parallel twin rectangular conductors, shown in Fig.

4.7(b), resistance and inductance of SRM using TLM match well to results of VFM

and BEM at high and low frequencies within 2%, and at mid frequency the resistance

and inductance are off 10% and 6%, respectively.  SRM using MPWM overestimates

low frequency inductance by 3.5%.  For closely coupled coplanar twin conductors,

shown in Fig. 4.7(c), all calculated resistance and inductance values agree well with

each other for all frequencies with less than 2% deviation, except SRM using MPWM

underestimates the low frequency inductance by 4.5%.  For these examples the con-

ductor is non-uniformly segmented with 20 segments across the wide faces with
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width ratio of 1.1, and 4 segments across the narrow face with width ratio of 2.

As shown in Fig. 3.6 and Fig. 3.8, SRM and VFM have been used to calculate the

series impedance for various geometries of VGCPW and microstrip lines.  For those

examples, SRM gives the same results as VFM.  And the gain in efficiency of SRM

over VFM is shown in Table 3.1, where the number of unknowns is reduced to about

one-thirds and computation time to at least one-twentieth for the same discretization

scheme.  Because SRM needs the discretization only on the conductor surface and the

decay of current is less severe along the conductor surface than inward into the con-

ductor, the number of segments can reduced more compared to the number of fila-

ments on the conductor surface in VFM.

4.3.3 A Microstrip Line : Comparison of Surface Ribbon Method and Integral

Equation Method

The series impedance of a microstrip line has been calculated by SRM and IEM

using approximated SIBC [58], where the signal line is 10 µm wide, 5 µm thick, and

5 µm above a ground plane.  In IEM the signal line is approximated as a thin plate at

the bottom of the conductor and the surface impedance of a flat conductor is used as

the SIBC.  SRM uses ten segments (for the wide surface) and five segments (for the

narrow surface) for the signal line and 50 segments for the ground plane with width

ratios of 1.8, 3, and 0.85, respectively, VFM uses 10 × 5 segments for the signal line

and 50 × 5 segments for the ground plane with width ratios of 1.8, 3, 0.85 and 3, re-

spectively, and IEM uses 10 segments for the signal line and 50 segments for the

ground with width ratios of 1.8 and 0.85, respectively.  Also the minimal segmenta-

tion scheme in SRM is derived and Fig. 4.8 shows that scheme for a microstrip line
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Figure 4.6:  Comparison of resistance and inductance between surface ribbon method

(SRM), and boundary element method (BEM).  A(8): BEM; B(solid line): SRM.
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Figure 4.7:  Comparison of resistance and inductance between volume filament

method (VFM), surface ribbon method (SRM), and boundary element method

(BEM).  A(8): BEM; B(dotted line): SRM using transmission line model; C(dashed

line): SRM using modified plane wave model; D(solid line): VFM.
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structure, where one segment is assigned at each side of the conductor and the ground

is divided into 5 segments, so the total number of segments are 9.  Figure 4.9 com-

pares the results of different methods used.  SRM and VFM give well matched results

but resistance and inductance of IEM are 27% and 23% off, respectively, from the re-

sults of SRM and VFM.  In SRM the signal line is approximated into two plates, one

on the top and one on the bottom surface for comparison, and the surface impedance

of a flat conductor used as the EII.  This is a similar approach as in previous work on

the IEM, but previous work use the impedance matrix for the two plate approximation

and simplify further.  The results of this simplification gives resistance and induc-

tance within 24% and 9% deviations from the results of SRM and VFM, respectively.

SRM with the minimal segments gives better results than IEM and SRM with the two

plate approximation.  When the minimal segments of 9 is used in SRM, the resistance

is off about 2% from the result of SRM using finer segments and the inductance is

overestimated by 10% and 2.5% at low and high frequencies, respectively, compared

to the results of SRM using finer segments.  In Table 4.1 the number of unknowns

and computation time for matrix assembling and solving are shown.  SRM reduces

the number of unknowns to less than one-third and computational time to almost one-

thirtieth for the same discretization scheme and at minimal segments the number of

unknowns is reduced to about one-thirtieth and computation time is decreased by al-

most three orders of magnitude with reasonable error.  Because IEM approximates the

thick conductor as one or two thin strips, it gives only approximate results, unlike

SRM that calculates accurate resistance and inductance without modification of the

geometries.  The error caused by simplifying the geometries is decreasing as the ratio

of conductor width to conductor thickness ( w / t ) and the ratio of dielectric height to
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conductor thickness ( h / t ) are increasing, gets worse for closely coupled lines, and in

this example the ratios are as 2 and 1, respectively, and the error is too large.

w
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w 3h3h

Figure 4.8:  Minimal segmentation of a microstrip line.  Signal line is segmented into

4 ribbons and the ground plane is divided into 5 ribbons, where the width of each rib-

bon is dependent only on the dimensions of the structure such as signal line width,

thickness, and height above the ground.
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Figure 4.9:  Comparison of resistance and inductance of a microstrip line between

volume filament method (VFM), surface ribbon method (SRM), and integral equation

method (IEM) using the modified standard impedance boundary condition (SIBC).

A(8): VFM; B(solid line): SRM; C(dotted line): SRM with minimal segments;

D(dashed line): IEM; E(dot-and-dashed line): SRM assuming two plates for the signal

line.
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Method Number of
unknowns

CPU time[sec]
Assembling Solving per freqeun

VFM

SRM α

SRMβ

 300

9

9.63

0.60

*

9.64

0.29

0.01

 80

IEM 60 0.22 0.10

SRMγ 70 0.51 0.14

Table 4.1:  Comparison of run times on an IBM RISC 6000 for volume filament

method (VFM), surface ribbon method (SRM), and integral equation method.  SRM

and VFM use gaussian elimination as a matrix solver, α  uses fine segments, β uses

minimal segments, γ assumes two plates for the signal line, and * is negligible time.

For comparison, two other minimum segmentation schemes in SRM are also con-

sidered.  Firstly, a single segment has been assigned to the ground plane.  Secondly,

the ground plane is discretized into three segments: one segment directly below the

signal line with the width of w , and one more segment on each side for the remaining

ground plane.  Both use four segments for the signal line.  For two different mi-

crostrip line geometries, resistance and inductance have been calculated using the dif-

ferent segmentation schemes of SRM, as well as with full VFM and a finely divided

SRM; example 1 has a signal line 10 µm wide (w = 10 µm) and 10 µm thick (t  = 10

µm), and a ground plane 500 µm wide and 10 µm thick, where VFM uses 10 × 10

segments for the signal line and 80 × 7 segments for the ground plane with width ra-

tios of 1.57, 1.57, 0.89, and 2.7, respectively.  Example 2 has a signal line of 10 µm

wide and 1 µm thick, and a ground plane 500 µm wide and 1 µm thick, where VFM

uses 14 × 6 segments for the signal line and 80 × 6 segments for the ground plane with

width ratios of 2.06, 3.2, 0.89, and 3.2, respectively.  For both examples SRM with

fine segments uses the same segmentation scheme of VFM except the ground plane is



83

-30

-20

-10

0

10

20

30

0.1 1 10
h/w

%
 e

rr
or

 o
f 

R
 a

tδ
=

 0
.1

t 8: Example1
O: Example2

A

B

C

D

(a) Comparison of high frequency resistance

-5

0

5

10

15

0.1 1 10
h/w

8: Example1
O: Example2

%
 e

rr
or

 o
f 

L
 a

tδ
=

 1
0t

A

B

C

D

(b) Comparison of low frequency inductance

-10

0

10

20

30

40

50

0.1 1 10
h/w

%
 e

rr
or

 o
f 

L
 a

tδ
=

 0
.1

t 8: Example1
O: Example2

A

B

C

D

(c) Comparison of high frequency inductance

Figure 4.10: Comparison of resistance and inductance calculated using different

segmentations in SRM.  Resistance and inductance are normalized by the results of

VFM.  A(solid line): fine segments; B(dot-and-dashed line): one segment for the

ground plane; C(dashed line): three segments for the ground plane; D(dotted line):

five segments for the ground plane.  Minimum segmentations use four segments for

the signal line.
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segmented into one layer at the top surface.  Figure 4.10 compares resistance and in-

ductance as a function of strip height above the ground plane h, from 0.1 × w to 10 × w

at the low frequency where δ = 10t, and the high frequency where δ = 0.1t . With five

segments for the ground plane SRM gives accuracy within 10% for resistance and in-

ductance for both examples.  With three segments for the ground SRM deviates by as

much as 30% for resistance and inductance.

. .

l = 500 µm

h 
=

 3
8 

µ
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h 1
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0 
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s = 10 µm t =
 4

 µ
m

Figure 4.11:  50 Ω coupled asymmetric striplines.  The signal lines are 10 µm wide, 4

µm thick, 10 µm gap over a bottom ground plane and between signal lines, conduc-

tivity 5.8 ×107 [S/m], and 38 µm thick dielectric.

4.3.4 Asymmetric Coupled Striplines

Another example to verify accuracy and efficiency of SRM are the asymmetric

coupled striplines shown in Fig. 4.11, which could be an interconnect structure of a

multichip module (MCM).  The signal lines are 10 µm wide, 4 µm thick, 10 µm gap

over a bottom ground plane and between signal lines, metal conductivity 5.8 ×107

[S/m], and 38 µm thick dielectric.  In SRM the signal line is segmented by 10 and 4

segments for each side with width ratios of 1.4 and 2, respectively, and the ground is

divided into 50 segments with width ratio of 0.85.  VFM uses the same segmentation

scheme as in SRM and the ground is segmented into 50× 4 filaments.  Also the mini-



85

mal segmentation scheme is used in SRM, and in this case the total number of seg-

ments is 9.  For all frequencies, in Fig. 4.12, SRM gives the results close to VFM

within 2% deviation.  When the minimal segments of 22 is used in SRM, resistance

and inductance are compared to those with finer segments at low, mid, and high fre-

quencies, respectively, as follows; R11 is off about 0.5%, 5%, and 2%, R12 is off

about 8%, 16%, and 10%, L11 is off about 1.5%, 0.5%, and 2%, and L12  is off about

4%, 5%, and 3%.  In Table 4.2 the number of unknowns and computation time for

matrix assembling and solving are shown.  SRM reduces the number of unknowns to

less than one-third and computational time to almost one-thirtieth for the same dis-

cretization scheme and at minimal segments the number of unknowns is reduced to

about one-twentieth and computation time is decreased by almost three orders of

magnitude with reasonable error.
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Figure 4.12:  Comparison of resistance and inductance of coupled asymmetric

striplines between volume filament method (VFM), surface ribbon method (SRM)

with the same segmentation scheme as VFM, and surface ribbon method (SRM) with

minimal segments.  A(8): VFM; B(solid line): SRM; C(dotted line): SRM with

minimal segments.
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Method Number of
unknowns

CPU time[sec]
Assembling Solving per freqeuncy

VFM

SRM

SRM*

 480

22

25.6

2.1

**

39

1.7

0.043

156

Table 4.2:  Comparison of run times on an IBM RISC 6000 for volume filament

method (VFM) and surface ribbon method (SRM).  SRM and VFM use gaussian

elimination as a matrix solver, * uses minimal segments, and ** is negligible time.

4.3.5 Crosstalk on Lossy Transmission Lines

As an example showing the skin and proximity effects on signal degradation and

crosstalk, asymmetric coupled striplines, shown in Fig. 4.11, with varying length and

termination, have been analyzed using the fast Fourier transform (FFT).  The thin film

conductors are assumed to be embedded in a lossless homogeneous dielectric medium

of dielectric constant 3.5, and, therefore, the capacitance matrix C[ ] is obtained from

the inverse of the matrix Lext[ ].  Figure 4.13 shows the circuit to be analyzed, where

the load capacitance CL1 and CL2  are 0.1 pF, and the resistances of the series termi-

nations ( RS1, RS2 ) are 9 Ω or 50 Ω (i.e., unmatched or matched to the high frequency

characteristic impedance of striplines).

As an input signal, a trapezoidal pulse is assumed with 0.1 ns rise and fall time

and the pulse width Tw  of 0.3 ns.  Figure 4.14 shows the spectrum of the input pulse.

The effective bandwidth is calculated as 2.26 GHz, at which frequency the skin depth

is almost one-third of the conductor thickness.  Figure 4.15(a) and (b) show the signal

on the active line and far-end crosstalk of the quiet line, when the length of line is 15

cm and matched termination is used.  For comparison voltage profiles are also obtain-
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Figure 4.13:  Example circuit configuration of coupled lossy transmission lines.
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Figure 4.14:  Frequency spectra of input pulse, where tr = t f  = 0.1 ns and Tw  = 0.3

ns, producing an effective bandwidth of 2.26 GHz.

ed under two cases assuming lossless LC  lines and RLC  lines with DC resistance for

all frequencies.  As shown in Fig. 4.15(a) the skin and proximity effects disperse the

signal and add rise time and delay.  Lossy transmission lines with DC resistance

generate more crosstalk than pure LC  assumption, but the skin and proximity effects

reduce it, as shown in Fig. 4.15(b), for matched termination.  Figure 4.15(c) and (d)

show crosstalk voltage vs. varying length of lines for unmatched and matched series

termination.  Skin and proximity effects reduce the crosstalk more for unmatched

termination than for matched termination.  For unmatched termination pure LC  as-

sumption gives the worst crosstalk and dispersive RLC  lines lessen the crosstalk by



88

30% from RdcLC  assumption. For matched termination RdcLC  assumption gives the

worst crosstalk, but the difference from the result of dispersive RLC  lines is 20% or

less, which is not so much as in the case of unmatched termination.
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Figure 4.15:  Output voltage at the end of the active line and far end crosstalk of the

quiet line.  (a) Output voltage of the active line with 15 cm length and matched termi-

nation, (b) Far end crosstalk of the quiet line with 15 cm length and matched termina-

tion, (c) Far end crosstalk vs. line length with unmatched termination, (d) Far end

crosstalk vs. line length with matched termination.  A(dotted line): pure LC  assump-
tion, B(dashed line): RdcLC  assumption with DC resistance, C(solid line): RLC  lines

considering the skin and proximity effects.
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 4.4 Discussion and Further Considerations

The SRM exploiting the EII has been shown to be accurate and numerically effi-

cient with several examples in calculating frequency dependent resistance and induc-

tance for lossy transmission lines.  The SRM reduces considerable number of un-

knowns by replacing discretization inside the conductor by segmentation only on the

conductor surface.  Non-uniform segmentation is used for both SRM and VFM, and it

considerably reduces computational time.  But with SRM much faster computation of

series impedance is possible without lose in accuracy.

In addition, SRM can exploit the numerically fast iterative matrix solvers in reference

[64] and higher order of basis functions in reference [63] as VFM can, and thus these

would add the efficiency of SRM.  In general the interconnect structures consist of

straight lines which are sequentially connected in series or parallel, and two dimen-

sional approximations for each section gives sufficient information for further stages

of circuit simulation.  But three dimensional analysis is inevitable for complicated

structures in small volumes such as meandering lines, vias, a ground plane with sev-

eral ports, etc.  In following chapter the extension of SRM to three dimensional

problems is discussed.


