Chapter 5
Three Dimensional Surface Ribbon Method

When the dimension of the structure is electrically small, the signal paths can be
made short by sub-division and the quasi-static approach is sensible for the calcula-
tion of equivalent circuit models. For the simple case of non-parallel lines, as men-
tioned earlier, the volume filament method (VFM) is applicable with rather compli-
cated integration of Green's function asin [61]. Discontinuities such as a microstrip
line bend, via-hole, etc. have been examined using the integral equation method as-
suming perfect conductors and using scalar current potential or scalar magnetostatic
potential as state variables [68, 69]. For general structures frequency dependent resis-
tance and inductance can be obtained by solving the volume current integral equation
in three dimension, which is known as the partial element equivalent circuit method
(PEEC) [54, 60, 64, 70-73]. Full-wave techniques have also been applied to analyzing
three dimensional geometries, but at the expense of increased numerical burden. The
full-wave spectral domain method (SDM) has been used in analyzing a spiral inductor
having an air-bridge, with the assumption of perfect conductors [74]. The electric
field integral equation (EFIE) using the standard impedance boundary condition
(SIBC) has also been developed for characterizing three dimensional structures of mi-
crostrip line, via, and meshed reference plane at high frequency [9, 10, 54, 75]. The
finite difference time domain method (FDTD) has been used to characterizing discon-

tinuities and reference planes [ 76-79].

In the previous chapter, the effective internal impedance (EIl) was successfully

combined with the current integral equation and it significantly reduced computation
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time. This approach can be extended into three dimensional geometries under the
guasi-static assumption [80]. In this chapter, EIl will be defined for all ribbons on the
surfaces of the conductor according to the direction of current flows, the surface cur-
rent integral equations will be derived, and the current continuity condition will be
applied. This three dimensional surface ribbon method (3DSRM) can be utilized
where PEEC can calculate frequency dependent resistance and inductance, such as the
discontinuities of bend and simple via, various reference planes, meander lines, etc.
The efficiency and accuracy of this 3DSRM will be examined through examples of
right-angled bends, meander lines, and a microstrip line with a meshed ground plane.
For comparison PEEC will be applied and the volume filament method (VFM) will be

used with atwo dimensiona approximation.
5.1 Partial Element Equivalent Circuit Technique

Ruehli [70] developed the partial element equivalent circuit method (PEEC) for
evaluating capacitance and frequency dependent resistance and inductance of three
dimensional geometries. And recently he has proved that the full-wave form of
PEEC is no more than exploiting the method of moments [81, 82]. He also derived a
guasi-static form of PEEC and applied it to evaluating resistance and inductance of a
microstrip line bend [71] and ground plane connections [60]. This approach is based
on the volume current integral equation using current vector as state variables, shown
in (4.6). Current continuity condition is enforced by applying Kirchhoff's current law
or voltage law, and, therefore, a nodal-based or mesh-based matrix is formed to be
solved. Also hybrid finite element method and method of moments was devel oped to

solve this volume integral equation in two steps instead of nodal-based or mesh-based
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approach, and has been utilized to solve a microstrip bend and simple shaped vias

[83].

Recently, PEEC has been applied to calculating the frequency dependent induc-
tance of a ceramic quad flat pack (CQFP) having about 200 pins, considering the skin
effect of the non-straight signal paths and frequency dependent current distribution on
aground plane [84]. And it has been utilized to calculate the inductance of avia [85]
and can a'so be applied to the effective inductance evaluation of reference planes pre-
sented in [86, 87] for the evaluation of simultaneous switching noise. But PEEC
needs an increasing number of segments to appropriately account for frequency de-
pendent resistance and inductance due to the skin and proximity effects at high fre-
guency and for complicated structures. To reduce the numerical complexity thick
conductors can be replaced by a thin strip and sheet resistance as in [84], which is
applicable for limited structures and does not accurately capture the high frequency

resistance.

Instead of approximating the structure a preconditioned generalized minimal
residual (GMRES) algorithm or a conjugate gradient algorithm can be adopted as a
fast iterative matrix solver, instead of expensive direct matrix solvers such as gaussian
elimination or LU decomposition. The speed of this approach can be enhanced with
the use of a multipole-accelerated algorithm for fast and approximated matrix-vector
multiplication [64]. Also PEEC has been speeded up more by a FFT-based algorithm
for matrix-vector multiplication in case of an uniformly segmented arbitrarily shaped
reference plane [72, 73]. To capture the finite conductivity and the skin and proxim-

ity effects fine discretization is required and it could be avoided by extending the
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SRM into three dimensional geometries. In addition, numerically efficient techniques

can be incorporated with SRM as well as PEEC.

5.2 Three Dimensional Surface Ribbon Method

Instead of solving the volume current integral equation inside of the conductor in
PEEC, only the surface of the conductor is segmented into ribbons and at each ribbon
and along the current flow direction Ell is defined to represent the characteristics of
the conductor interior, as in two dimensional problem. Unlike the two dimensional
problem where the current continuity condition is inherently satisfied, this condition
should be enforced in the surface current integral equations asin PEEC. Infollowing
sub-sections, the segmentation scheme of 3DSRM will be explained compared to
PEEC, the EIl will be defined using the transmission line model, and mesh-based

analysis will be considered.
5.2.1 Discretization and Effective Internal | mpedance

In PEEC, the conductor is divided into small hexahedrons as shown in the right-
angled bend structure of Fig. 5.1(a), anodeis placed at the center of each hexahedron,
and a partial element is defined between two adjoining nodes, as shown in Fig. 5.1(b).
The volume current integral equation is expanded and tested at each element using
pulse basis functions and, therefore, three dimensional current flow is considered in-
side of the conductor. In 3DSRM, the conductor surface is divided into rectangular
patches asin Fig. 5.2(a), anode is also given at the center of each rectangular patch,
and aribbon is defined between two adjoining nodes asin Fig. 5.2(b). Therefore, the
number of segments is reduced by replacing volume discretization of the order N in

PEEC by surface discretization of the order N2 in 3DSRM.
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Figure 5.1: Discretization of the conductor inside for the use of partial element
equivalent circuits (PEEC) method in an example of a right-angled bend. (a) The
conductor is divided into small hexahedrons, and (b) an element is defined between
adjoining nodes placed at the center of the hexahedrons; arrow indicates direction of

current flow.
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Figure 5.2: Discretization of the conductor surface for the use of the three-dimen-
sional surface ribbon method (3DSRM) in an example of aright-angled bend. (a) The
conductor surface is divided into small rectangular patches, and (b) a ribbon is de-
fined between adjoining nodes placed at the center of the rectangles; arrow indicates
direction of current flow.
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Figure 5.3: Sub-divisions of the conductor interior for defining the effective internal
impedance (EIl) along the direction of current flows in an example of aright-angled
bend. (a) y-axis, (b) z-axis, (c) x-axis; arrows indicate direction of current flow.

Based on the above discretization scheme, two directional surface current is de-
fined all over the surface of the conductor. And on each ribbon Ell should be as-
signed the appropriate modeling corresponding to the direction of the surface current.
One possible way to define Ell on three dimensional geometriesis to approximate the

surface impedance of the structure, but it is hard to guess the surface impedance be-
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cause of the complicated geometries. Asin reference [20] and Chapter Two the plane
wave model could be modified or extended to account for arbitrary three dimensional
geometries. Or the transmission line model in Chapter Two could be extended into
three dimensional geometries. In this study, the transmission line model is easily ex-
tended into three dimensional structures. Figure 5.3 shows how to divide the conduc-
tor interior for EIl models along al directions of the current for an example of aright-
angled bend. At and near the corner two tangential currents are defined and for uni-
form sections only longitudinal current is assumed. Where the number of outer sur-
faces are four, Ell is defined as in two dimensional problems. If the number of outer
surfaces are three, then the rectangular cross-section is divided into two pairs of
isosceles triangles near two corners of adjoining surfaces and flat rectangles for what
remains. For adjoining two surfaces it is divided into two isosceles triangles at the
corner and two flat rectangles for what remains, and for two parallel surfacesit is di-
vided into two flat rectangles. For each isosceles triangle Ell is derived using the
transmission line model, and for each rectangle the surface impedance of a flat con-

ductor is used as explained in Chapter Two.
5.2.2 Current Continuity Condition and Mesh Analysis

The surface current integral equation of (4.12) is driven at each ribbon. The
impedance matrix can be deduced by relating current and voltage at each ribbon as

follows
[Z][1 ] = [ Vo] (5.1)

where [V, ] and [I,] are nx1 ribbon voltage and current vectors, n is the number of

ribbons, and n x n impedance matrix of [Z] is given by
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2] = [ Zei ()] + jof L] (5.2)

To ensure the current continuity condition, Kirchhoff's voltage law (KVL) is applied
to the matrix equation of (5.1) that then leads to mesh analysis, which has fewer un-
knowns and a more regular matrix than the nodal analysis using Kirchhoff's current
law (KCL). KVL isexpressed using the mesh matrix relating each ribbon and meshes
by

[M[Ve] = [Vin] (5.3)

where [M] isthe mx n mesh matrix, [V,,] isthe mx 1 mesh voltage vector, and m

isthe number of meshes. The mesh voltages are almost zero except the meshes where
external sources are applied. Also current on each ribbon is related to mesh currents

using the above mesh matrix as follows

[MITt] =[], (5.4)
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g

Figure 5.4: Circuital representation of the three-dimensional surface ribbon method
(3DSRM) in case of aright-angled bend.
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where [, is the mx1 mesh current vector. Finally, the mesh matrix equation is

formed by
[MIZIIM] [ 1] = [Vim] (5.5)

The above procedure is identical to the mesh analysis [64] in PEEC, and fre-
guency dependent resistance and inductance are obtained by solving the above matrix
with direct or iterative matrix solvers. Figure 5.4 shows the equivalent circuits of the

mesh analysis for an example of aright-angled bend.
5.3 Examples

The accuracy and efficiency of 3DSRM could be shown by characterizing dis-
continuities and complex planar structures of high frequency circuits. Because the
quasi-static approximation is valid not only for uniform lines but also for discontinu-
ities such as bends and vias, alumped circuit model can be used to represent the dis-
continuities. First, coupled right-angled bends are examined as one of the simplest
cases. When the planar structure becomes complicated and the non-uniform parts are
not negligible, the non-uniform structures can not be simplified into uniform lines.
The series impedance of coupled meander lines are analyzed as a complicated case.
And a microstrip line with a meshed ground plane is examined to see the effects of
mesh pitch and apertures. For comparisons PEEC is used and the volume filament

method (VFM) is also applied, but this requires smplifying the geometries.
5.3.1 Coupled Right-angled Bends

Figure 5.5 shows coupled right-angled bends, where the rectangular conductors

are 10 pum wide and 10 um thick, placed on a plane with gap of 10 um, and conduc-
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tivity 5.8x10” [S/m]. For that structure resistance and inductance are calculated by
3DSRM, PEEC, and approximated using VFM, To distinguish bend discontinuities
from uniform lines two reference planes are placed from the corner of outer lines at a
distance Iy = 35 um. These planes are selected where the current distribution is
within 10% that of uniform lines VFM simplifies the structure into two pairs of
straight lines with length chosen to give correct DC resistance. The "excess' resis-
tance and inductance of the bends are obtained by subtracting the impedance of uni-
form lines from the total impedance as follows

I:‘)dis = Iaot - I%Jni

(5.6)
Lais = Ltot — Luni

where R, and Ly arethe total resistance and inductance, and R,,; and L, arethe

resistance and inductance of two pairs of twin uniform lines with the length of | —1.

Resistance and inductance of uniform lines are calculated with VFM for PEEC and
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Figure 5.5: Coupled right-angled bends. The lines are 10 um wide, 10 pum thick, 10
Hm spacing, and conductivity 5.8 %107 [S/m]. Discontinuity section is defined on the
bends from the corner of outer lineswith |4 =35 pum.
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Figure 5.6: Comparison of resistance and inductance of coupled right-angled bends
between partial element equivalent circuits method (PEEC), three-dimensional sur-

face ribbon method (3DSRM), and two-dimensional approximation using the volume
filament method (VFM). (&) Discontinuity resistance and inductance with | =14 =

100 pum, (b) Total resistance normalized by resistance, (c) Tota inductance normal-
ized by inductance of uniform lines having the same DC resistance. A(x): PEEC;
B(solid line): 3DSRM; C(dotted line): 2-D approximation using VFM.
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VFM, and two dimensional SRM for 3DSRM with the same segmentation scheme.
PEEC uses uniform 4 x4 segments at each side of the conductor and 9 segments lon-
gitudinally, VFM uses uniform 10x 10 segments, and 3DSRM uses uniform 3 seg-
ments at each surface of the conductor. This leads 973, 249, and 199 unknowns for
PEEC, 3DSRM, and VFM, respectively. Figure 5.6(a) shows resistance and induc-
tance and compares with each technique used, when the length | =14 is 100 um. For
discontinuity inductance 3DSRM is close to PEEC with a deviation of less than 2%,
and VFM is off 6% at low frequency and agrees well at high frequencies. For discon-
tinuity resistance PEEC does not capture the skin effect fully at high frequency due to

coarse segments, and VFM give quite close answer to 3DSRM with 20% error.

For this simple bend having small non-uniform parts compared to uniform parts,
the discontinuities do not have significant effect under the quasi-static assumption.
To see the effect of bends, total resistance and inductance are normalized, respec-
tively, by resistance and inductance of twin uniform lines having the same DC resis-
tance as that of the original lines. Impedance of twin uniform linesis calculated by
SRM with 7 segments on each side of the conductor. Figure 5.6(b) compares normal -
ized resistance and Fig. 5.6(c) shows normalized inductance at the high frequency of
10 GHz. As shown in the figures, discontinuity resistance and inductance can be
simply approximated by straight lines having the same DC resistance for aline length

longer than 100 pm.
5.3.2. Coupled Meander Lines

Like the rectangular spiral inductor in reference [74], the corners of meander
lines with short uniform sections may have significant effect on frequency dependent

resistance and inductance. When the meandering is periodically repeated, one period
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is named the unit cell; two periods of coupled meander lines are drawn in Fig. 5.7.
The rectangular conductor is 10 um wide and 10 pum thick, the pitch of a period is 40
pm, two lines are spaced with gap of 10 um, and the conductivity is 5.8 x 107 [S/m].
Because of the periodicity of the structure the periodic condition can be enforced into
the current integral equations, and again the number of unknowns can be reduced by a
half due to mirror image symmetries. Thus, the number of unknowns can be kept to
that of unit cell regardless of the line length. The surfaces of lines is expressed by

unit cell geometries as follows

1 nc

Su(<%.2)= 3 Y Sl xyz+kp), (57)

i=0k=0

where S, isthe surface of the entire lines, S is the surface of a unit cell, nc isthe

number of periods, and P isthe pitch of a period. Therefore, the matrix equation of

(4.13) can be rewritten as follows
1 nc _
gze”(r(x,y, Z))] + jwz Z[L(r(x, Y, z),r'((—l)' X\y,z + kP))]alr] =[v/] 8
i=0k=0

where r(x,y,2),r'(x',y',z) 0S,. The above periodic condition requires more time
for assembling the matrix as the line length increases, but the number of unknowns

remains the same and matrix solving time is constant.

Resistance and inductance of meander lines with 10 cells has been calculated us-
ing 3ADSRM, PEEC, and approximated using VFM. Figure 5.8(a) shows resistance
and inductance per period and compares the results with each other. Like in the case
of right-angled bends VFM uses the simplified structure of cascaded straight lines

giving correct DC resistance. PEEC uses uniform 5 x4 segments at each side of the
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Figure 5.7: Coupled meander lines. The lines are 10 um wide, 10 um thick, 10 um
spacing, 40 pm period, and conductivity 5.8x10” [S/m]. Two lines are mirror sym-
metric against yz-plane with x=0.

conductor, VFM uses uniform 10 x 10 segments, and 3DSRM uses uniform 3 seg-
ments at each surface of the conductor. This leads to 1021, 209, and 397 unknowns
for PEEC, 3DSRM, and VFM, respectively. For inductance 3DSRM is close to
PEEC with deviation of less than 3%, and VFM is considerably off 26% due to un-
derestimated line length. For resistance 3DSRM and PEEC are matched well up to
about 3 GHz, within 3%, and beyond that PEEC does not capture the skin effect fully
due to coarse segments, and VFM is off 30% from 3DSRM. Figure 5.8(b) compares
inductance vs. line length. When the line length becomes longer than 5 times the pe-
riod, per unit period inductance reaches a constant value. And 3DSRM and PEEC
give amost same low frequency inductance, are about 3% different for the high fre-
guency inductance, and VFM underestimates inductance about 26%. In Table 5.1 the
number of unknowns and the computation time are compared. It shows 3DSRM sig-
nificantly reduces the number of unknowns and CPU time over PEEC and even VFM
of two dimensional approximation.
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Figure 5.8: Comparison of resistance and inductance of coupled meander lines be-
tween partial element equivalent circuits method (PEEC), three-dimensional surface
ribbon method (3DSRM), and two-dimensional approximation using the volume fil -
ament method (VFM). (@) Per unit period resistance and inductance calculated with
10 periods, (b) Per unit period inductance calculated vs. the number of periods. A(x):
PEEC; B(solid line): 3DSRM; C(dotted line): 2-D approximation using VFM.
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Nunber of CPU ti e[ sec]
Met hod . )
unknowns Assenbl i ng* Sol vi ng per freqgeun
PEEC 1021 5234 415
3D SRM 209 57 7.5
2D VFM 397 667 26

Table 5.1: Comparison of the number of unknowns used and run times on an IBM
RISC 6000 for partial element equivalent circuits method (PEEC), three-dimensional
surface ribbon method (3DSRM), and 2-D approximation using the volume filament
method (VFM). Gaussian elimination is used as a matrix solver, and * isin case of 5
periods.

5.3.3 A Microstrip Lineover a Meshed Ground Plane

The electromagnetic modeling of a transmission line structure with a reference
plane have been widely studied through quasi-TEM or full-wave techniques in the
two-dimensional domain. The meshed plane instead of the solid plane has become an
important structure in modern microel ectronic packaging such as deposited metal-or-
ganic multichip modules (MCM-Ds), which is to obtain desired electrical and me-
chanical characteristics with less metal coverage and thinner dielectric layer.
However, the transmission line over a meshed reference plane is more difficult to ana-
lyze than the transmission line over a solid plane due to the complicated mesh pattern.
Full-wave electrical field integral equation (EFIE) methods [10, 75, 88] and the finite
difference time domain (FDTD) method [77] have been utilized to analyze a periodi-
cally perforated reference plane, and some measurements have been performed [89].
And asimple analytic approach [90] has also been applied to evaluate the propagation
constant where the transmission line over a meshed ground plane is approximated by

cascading two uniform transmission lines which are easily analyzed by two-dimen-

105



siona quasi-TEM field solvers. But the studies are mainly focused on calculating
high frequency characteristic impedance and propagation constant, frequency depen-
dent loss, so the effect of the reference plane have not been fully examined. In this
section, 3DSRM as well as PEEC is applied to calculate frequency dependent resis-
tance and inductance of the transmission line over a periodically perforated ground

plane.

1 fet

Figure 5.9: A microstrip line over a meshed ground plane where the aperture is
placed at an angle of 45 with respect to the signal line. The signal line is 12 pm
wide, 2.5 um thick, 12 um over the ground, the mesh pitch is 100 um, the aperture is
50 um square, and the conductivity is 5.8 x10" [S/m].

Figure 5.9 shows part of a microstrip line over an obliquely oriented meshed
ground plane, where the signal line is 12 um wide, 2.5 um thick and 12 pm over the
ground plane, the ground plane has the mesh pitch of 100 pum, an aperture of 50 um
sguare, the signal line is 45° with respect to x-axis, and the conductivity is 5.8 x 107
[SYm]. The shaded part is a unit ground cell with the period of 100+/2 pm, so the pe-
riodic condition is utilized as in 5.3.2. Resistance and inductance of this structure

with 5 apertures perpendicular to the signal line and 9 apertures along the signal line
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were calculated by PEEC and 3DSRM. Figure 5.10 shows resistance and inductance
per unit length and compares the results with each other and a microstrip line over a
solid ground. PEEC exploits three different segmentation schemes. First, the meshed
ground is approximated by connecting straight lines and 6 x 3 segments are used at
each side of the conductor with width ratios of 3 and 2.5, respectively. Second, one
unit cell of the meshed ground is segmented by uniform 9x9 segments on xy-plane
and one layer segment is used along the z-axis. Third, one unit cell of meshed
ground is segmented by uniform 9x9 segments on xy-plane and two layer segments

are used along the z-axis. Thesignal lineis non-uniformly segmented into 12 x4
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Figure 5.10: Comparison of resistance and inductance of a microstrip line over a
meshed ground plane between partial element equivalent circuits method (PEEC),
three-dimensional surface ribbon method (3DSRM), and a microstrip line over a solid
ground. A(dashed line): PEEC with straight line approximation; B(dotted line):
PEEC with one layer segment of the ground; C(x): PEEC with two layer segments of
the ground; D(solid line): 3DSRM, E(dot-and-dashed line): a microstrip line over a
solid ground. Meshed ground is considered by 5 apertures perpendicular to the signal
line and 9 apertures along the signal line.
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Nunber of CPU ti e[ sec]
Met hod : )
unknowns Assenbl i ng* Sol vi ng per freqgeun
PEEC1 398 1360.1 18.6
PEEC2 283 1788. 4 8.0
PEEC3 743 4745. 1 146. 7
3D SRM 148 37.2 3.1

Table 5.2. Comparison of the number of unknowns used and run times on an IBM
RISC 6000 for three segmentation schemes of partial element equivalent circuits
method (PEEC) and three-dimensional surface ribbon method (3DSRM). Gaussian
elimination algorithm is used as a matrix solver, and * isin case of 9 periods.
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Figure 5.11: Comparison of resistance and inductance of a microstrip line over a
meshed ground plane with varying mesh pitch. (a) Resistance at t =2.50 vs. mesh
pitch, (b) High frequency inductance vs. mesh pitch. Aperture ratio = (g/ p)2 x 100
[%]. A(o and solid line): 3DSRM at 50% aperture, B(o and dotted line): PEEC with
straight line approximation at 50% aperture, C(% and solid line): 3DSRM at 25%
aperture, D(x and dotted line): PEEC with straight line approximation at 25% aper-
ture.
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segments on each side with width ratios of 1.4 and 2, respectively, for al three seg-
mentation schemes. These three segmentation schemes are identified as PEEC1,
PEEC2, and PEECS3, respectively. 3DSRM uses uniform 7x7 segments in the xy-
plane and three segments with width ratio of 2.8 for the wide surface and one segment
for the narrow surface of the signal line. To reduce the number of unknowns only the
top surface of the meshed ground is segmented instead of all surfaces. The strip
width of the meshed ground is approximately increased by the thickness to account
for the effect of finite thickness edges. Thisleadsto 398, 283, 743 and 148 unknowns
for the three PEECs and 3DSRM, respectively. For inductance 3DSRM is close to
PEEC2 and PEEC3 with a deviation of 5% at low frequency and 4% at high fre-
guency, while PEEC1 is considerably off about 23% due to the simplified geometry
and overestimated line length. For resistance, 3DSRM and the PEECs are matched
well upto 0 =t. PEEC3 is off about 20% from 3DSRM at 10 GHz because coarse
segments are used on the meshed ground plane and, therefore, current crowding is
underestimated. Table 5.2 compares the number of unknowns and the computation
time of the various segmentation schemes and techniques used. When 3DSRM uses
uniform 12x 12 segments on one cell of the meshed ground plane, PEEC1 uses 6x 3
segments with width ratios of 3 and 2.5, respectively, on each side of simplified
straight lines, and 12 x 4 segments with width ratios of 1.4 and 2, respectively, on the
signal line for both cases. Figure 5.11 compares resistance and inductance vs. mesh
pitch. Figure5.11(a) comparesresistance at t = 2.50 vs. mesh pitch, where PEECL1 is
off about 16% from 3DSRM. Figure 5.11(b) compares high frequency inductance vs.
mesh pitch, where for 25% aperture PEEC1 overestimated inductance about 20%
compared to the 3DSRM and for 50% aperture PEECL1 gives a dlightly higher value
of 8% compared to 3DSRM. This indicates that the aperture ratio is becomes large
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the simple approximation of straight lines is enough to capture the effect of the
meshed ground plane, as expected. Through this example the efficiency and accuracy
of 3DSRM is demonstrated by comparing the results to those of the more rigorous

PEEC.
5.4 Discussion and Further Consider ations

Simple Ell models have been derived for three dimensional geometries by ex-
tending the transmission line model from the two dimensional problems. Ell can be
combined with the surface integral equations and the current continuity condition is
satisfied by applying Kirchhoff's voltage law (KVL). This 3DSRM is utilized to ex-

amine three examples and the accuracy and efficiency is verified.

Even though non-equal segments are used in this study, a more optimized non-
uniform discretization scheme can be developed to further enhance the efficiency of
the technique. This technique has been applied to structures having rectangular cross-
sections with rectangular segments, and it can be extended to the geometries of trape-
zoidal or circular cross-sections with developing the proper EIl models. But to afford
a complicated geometries like a via-hole structure [74] triangular segments can be
used as in the full-wave electric field integral equation method (EFIE) of reference
[10, 54]. It may require higher order of basis functions [54] than pulse basis functions
and more CPU time to calculate the integral of Green's functions. The fast iterative
matrix solver [64] and FFT-based [72, 73] or multipole-accelerated matrix-vector
multiplication [64] can also be utilized in 3BDSRM to enhance the numerical effi-

ciency.
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