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Chapter 2
Modeling Microbolometer Performance

Since the dynamics of microbolometer operation involve components of current

flow as well as heat flow, both circuit analysis and thermal modeling must be integrated

in order to model actual microbolometer performance.  By developing such models, the

electrical and thermal responses can be related to material properties and device

geometry.  An understanding of these relationships is essential in making material and

geometric choices for these devices.

2 . 1 Analytical Models of Thermal Impedances

2 . 1 . 1 Heat Flow Paths

Simplified thermal models which can be solved analytically can be used as tools

to model bolometer operation.  While simplified models may not provide exact thermal

information, they can provide an easy method to approximate the effects of scaling and

material properties on device performance.  They can also be used to compare the

influence of different mechanisms of heat flow out of the detector.

Figure 2.1 illustrates a model which separates the heat flow out of a

microbolometer into three distinct mechanisms.  The responsivity model treats the

detector as a lumped element, by approximating the detector as a small region of

constant temperature.  In a real microbolometer, the temperature will vary throughout
the detector.  Zd represents the thermal impedance for the heat leaving the ends of the

detector directly into the electrical leads of the antenna.  In this model, the antenna leads

are approximated as perfect heat sinks, and therefore remain at the ambient temperature.
Zsub is the impedance for the heat which leaves the system through the substrate.

Z fringe corresponds to heat which enters the substrate and is then coupled into the

antenna leads.
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Figure 2.1     Heat flow paths for heat leaving an antenna-coupled microbolometer.

2 . 1 . 2 Heat Conduction Directly Through the Antenna Leads

The thermal solution for the impedance for heat flow through the ends of the

heater directly into the leads can be estimated by approximating the leads as perfect heat

sinks.  By assuming that heat is generated uniformly within the detector, and that the

ends are attached to perfect heat sinks, the temperature profile can be solved as equation

2.1

T(x) = q' ⋅L2

2 ⋅ k
⋅ x

L
− x

L






2





 (2.1)

where L is the length of the bar, and q' is density of heat generation within bar.  The
profile for this solution is shown in figure 2.2, where Tmax is calculated as



16

Tmax = q' ⋅L
8 ⋅ k

 (2.2)
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Figure 2.2  Thermal profile for a microbolometer without a substrate.  The profile shown here

considers only heat flow directly into the antenna leads.

A value for effective thermal impedance can be obtained by dividing the average

temperature by the total power dissipated within the bar.  The result is shown in

equation 2.3 below.

Zd = L
12 ⋅ k ⋅ t ⋅ w

 (2.3)
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The dimensions of the detector must be chosen so that its resistance matches the

embedding impedance of the antenna structure.  By calculating the detector resistance as

R = ρ ⋅ L

w ⋅ t
 (2.4)

the steady state thermal impedance of the detector can be expressed as

Zd = R
12

⋅ σ
k

 (2.5)

It has been pointed out by Neikirk [1] that for a fixed device resistance, almost all

metals would result in nearly the same thermal impedance out the leads.  This is

because the ratio of electrical conductivity to thermal conductivity metals is strongly

guided by the Wiedmann-Franz law, stated as

σ
k

= 3

π 2
⋅ e

kB







2

⋅ 1

T
 (2.6)

where e is the electron charge, kB is the Boltzmann constant, and T is the absolute

temperature.  Table 2.1 lists several metals and their respective electrical and thermal

conductivities as well as the temperature coefficient of conductivity.

Bismuth films are somewhat troublesome to model because the thin film

properties can be very different from bulk properties, and are sensitive to deposition

conditions.  Reports on the electrical properties of bismuth films are given by

Wentworth [2], Neikirk [1], and Abrosimov et al[3].  The resistivity generally

increases with decreasing film thickness and is somewhat predictable.  There have been

fewer studies which have reported thermal conductivity values for these films.

Although the reported values show a trend of increased thermal conductivity with

increased electrical conductivity, the ratio of theses values varied considerably  (see

table 2.1).  The film which had a high resistivity[4] had a significantly lower σ k ratio

than those reported which had lower resistivities[3], although this apparent difference

may possibly be due to different experimental procedures.
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Material

Thermal

Conductivity

k (W/cm/K)

Electrical

Resistivity

ρ (µΩ-cm)

σ
k (K/Ω/W)

Temperature

Coefficient of

Resistance (K-1)

Bi (bulk)   0.0792   2  ~ 120   2 1.1 x 105   0.003   2

Bi (thin film)

     1000 Å
~0.029   3  ~ 875   3 3.9 x 104     -

Bi (thin film)

     1000 Å
~0.015   6  ~ 300   6 2.2 x 105     -

Bi (thin film)

     3000 Å
~0.033   6  ~ 140   6 2.2 x 105     -

Bi (thin film) ~0. 018   5  ~750    4 7.5 x 104  5   0.003   5

Au   3.15   1    2.249   1 1.41 x 105   0.00367   1

Ag   4.26   1    1.628   1 1.44 x 105   0.00373   1

Ni   0.904   1    7.16     1 1.55 x 105   0.00555   1

Sn   0.665   1    13.194  1 1.11 x 105   0.00255   1

Te ~0.1   2 4.36 x 106   2 2.3     -

88Au-12Ge   0.439   1    30   1 7.6 x 104     -

Nichrome   0.126   1    100   1 7.9 x 104   0.000127   1

Table 2.1   Thermal conductivity and electrical resistivity for various metals used in fabricating

microelectronics and thermal detectors.  The σ/k values are computed from these values.

1  Materials Handbook  for Hybrid Microelectronics, Artech House, 1988

2  CRC Handbook of Chemistry and Physics, 64th edition, CRC Press, 1984-1984.

3  As reported by Neikirk for an air-bridge microbolometer  [4]
4  Typical values measured at UT Austin.

5  Values assumed for most thermal simulations in this study.

6  As reported by Abrosimov et al [3]
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2 . 1 . 3 Heat Conduction into the Substrate

For typical bolometer shapes, in which the length (L) to width (W) ratios are

near 1, the  heat flow into the substrate can be approximated as flowing radially from a

hemisphere of nearly the same surface area as the area of the detector-substrate

interface[1] .  For thick substrates (substrate thickness >> detector dimensions), the

substrate can be approximated as a semi-infinite solid.  The steady state impedance of a

hemispherical surface into a substrate is given by

Zsub =  
1

2 ⋅ π ⋅ ksub ⋅ a
 (2.7)

where ksub is the thermal conductivity of the substrate and a is the radius of the

hemispherical surface.  This concept is illustrated in figure 2.3.

a

L

W

Figure 2.3    Heat flow from a bolometer into a substrate can be modeled as flowing radially

from a hemispherical surface.  The figure above shows a hemispherical surface of

the same area as the square bolometer above it.
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To approximate the thermal impedance of a rectangular bolometer on a substrate, the

detector-substrate contact area can be approximated as a hemispherical surface of the

same area.  For this case, the effective radius is

a =  2 ⋅ π ⋅ L ⋅ W  (2.8)

By making this assumption, the thermal impedance an be estimated as

Zsub ≈  
1

2π ⋅ ksub ⋅ L ⋅ W( )
1/2  (2.9)

Table 2.2 shows the steady state substrate thermal impedance of a square bolometer

calculated using the hemispherical approximation as well as by a finite difference

method.  The results shown here suggests that this approximation is fairly accurate for

a square bolometer, but underestimates the impedance by a factor of about 1.2 for a

square bolometer.

Area 4 µm2

Substrate Thermal

Conductivity

   0.018 W/cm/K

Hemisphere
Approximation    Zsub

   1.1 x 105  (K/W)

Finite Difference Zsub    1.3 x 105  (K/W)

Table 2.2  Comparing Analytical and Finite difference solutions for thermal impedance into

the substrate for a bolometer in which the length and width are equal.
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For bolometers with large length-to-width aspect ratios, the heat flow into the

substrate becomes more difficult to model analytically.  Consider a long, rectangular,

isolated bolometer on a semi-infinite substrate will no antenna leads.  If the thermal

conductivity of the substrate is much lower than the thermal conductivity of the

bolometer, then heat flow out of the bolometer will be determined primarily by the

temperature profile within the substrate.  It can be shown that an infinitely long cylinder

embedded into the surface of a semi-infinite solid will have an infinite thermal

impedance per unit length.  Therefore, the finite bolometer will approach a finite

temperature when the temperature profiles into the substrate are roughly spherical.

Figure 2.4 shows the normalized thermal impedance as a function of aspect ratio, for

bolometers of constant width.  The crosses show the impedance calculated using a 3-d

finite difference method.  The upper line represents the thermal impedance of a square

bolometer of the same area as the long bolometer (with a dependence on dimensions as

shown in equation 2.9).  As expected, the thermal impedance of a long bolometer is

lower than the thermal impedance of a square bolometer of the same area.  The lower

line represents a square bolometer of the same width as the length.  We would expect

that the impedance of a rectangular bolometer would have a dependence somewhere

between 1/root(L) and 1/L from the square bolometer value.  The middle curve shows a

curve fit computed by assuming a 1/L0.6  dependence on length for a fixed width.

The data in table 2.2 and figure 2.4 gives enough data to create an empirical

formula for closely estimating the thermal impedance into the substrate for various

aspect ratios.  Table 2.2 shows that the hemispherical approximation underestimates the

impedance by a factor of about 1.2 for a square bolometer.  The data in figure 2.4

shows that the actual impedance has about 1/L0.6 dependence on length for a fixed

width.  By combining these two relationships, an empirical formula can be given as

Zsub =   1. 2  ⋅ 1

2π ⋅ ksub ⋅(W ⋅ L)0.5
⋅ 1

L /W ( )0.1  (2.10)

An alternate way of expressing this relation is
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Zsub =  

1. 2

2π ⋅ ksub ⋅ L0.6 ⋅ W0.4  (2.11)

It is unclear whether different substrate thermal conductivities will have a

significant effect on the influence of aspect ratios on the thermal impedance.
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Figure 2.4  Normalized steady state thermal impedance for a rectangle on a semi-infinite solid.

The substrate thermal conductivity for these simulations was 0.014 W/cm/K.
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2 . 1 . 4 Substrate to Antenna Fringe Thermal Coupling

Another independent component of heat conduction out of a microbolometer is

heat that flows from the detector into the substrate, and is then coupled into the antenna

leads.  This mechanism is illustrated in figure 2.5.  The lines shown denote fringe

fields of high thermal gradients toward the antenna.  Figure 2.6 shows the isotherms of

a bismuth microbolometer computed by a finite difference method.

Antenna
LeadDetector/heater

Substrate

heat flow into the 
antenna from the 
substrate

Figure 2.5 Fringe heat conduction from a microbolometer through the

substrate and into the antenna leads.
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Figure 2.6 Isothermal profiles into the substrate of an antenna-coupled microbolometer
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Figure 2.7  Simulated temperature profiles into the substrate at two points below a bismuth

microbolometer (length = 4 µm, width = 2 µm).  The upper points are calculated at

0.5 µm from the center of the microbolometer lengthwise (halfway between the

center and the antenna leads). The lower points are measured at the point where the

antenna touches the detector (x = 1.0 µm).  Both sets of points are measured at the

center of the detector width (z = 0).
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Figure 2.7  shows  one dimensional temperature profiles into the substrate at two points

below the bismuth detector element.  The lower curve shows a steep negative

temperature gradient in the substrate near the metal lead, indicating a significant amount

on heat transport into the lead from the substrate.

Since the modes of heat loss are independent, the overall net impedance can be

related to these modes as

1
Znet

= 1
Zd

+ 1
Zsub

+ 1
Zfringe

 (2.12)

By using a finite difference method to solve for Znet , and the empirical formula shown

in equation 2.11 to approximate Zsub, the value for heat loss though the fringe

mechanism can be calculated as

Zfringe = 1
Znet

− 1
Zd

− 1
Zsub











−1

 (2.13a)

This relation can also be expressed as thermal admittances

Yfringe = Ynet − Yd − Ysub
 (2.13b)

Table 2.3 lists the input parameters and the results of impedance calculations for

bismuth microbolometers of fixed width with gold antenna leads.  These impedance

results are also shown in figure 2.8a.  Figure 2.8b displays the same results as thermal
admittances.  In this graph, the net admittance (Ynet) can be seen the linear sum of the

other components.  These admittance values are also proportional to the amount of heat

loss through each mechanism.  The detector thickness was scaled for constant electrical
and thermal impedance to the electrical leads.  Values for  Znet were found using the

finite difference method.  Zd was calculated using equation 2.3, and Zsub was

calculated using equation 2.11.
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detector length 1 µm 2 µm 4 µm 8 µm

detector width 2 µm 2 µm 2 µm 2 µm

detector thickness 375 Å 750 Å 1500 Å 3000 Å

detector thermal

 conductivity

 (W/cm/K) [bismuth]

0.033 0.033 0.033 0.033

substrate thermal

conductivity

(W/cm/K) [glass]

0.018 0.018 0.018 0.018

antenna thermal

conductivity

(W/cm/K) [gold]

3.15 3.15 3.15 3.15

Znet (K/W) 7.15 x 104 7.96 x 104 6.8 x 104 5.28 x 104

Zd (K/W) 6.17 x 105 6.17 x 105 6.17 x 105 6.17 x 105

Zsub (K/W) 2.02 x 105 1.33 x 105 8.77 x 104 5.79 x 104

Zfringe (K/W) 1.35 x 105 2.92 x 105 5.93 x 105 2.41 x 107

Znet/Zd 0.12 0.13 0.11 0.086

Znet/Zsub 0.35 0.60 0.78 0.91

Znet/Zfringe 0.53 0.27 0.11 0.0022

Table 2.3     Individual Components of thermal impedance and heat loss for a bismuth
microbolometers of fixed width (2 µm) and various lengths.

Z fringe was found with these results using equation 2.13a.  The values of

Znet/Zfringe , Znet/Zsub ,  and Znet/Zd  are given to show what fraction of heat loss

is due to the fringe, substrate, and detector lead mechanism respectively.  The 2 µm

detector width chosen for this data represents a typical microbolometer width that can

be readily fabricated using contact lithography with a self-aligned photoresist air-bridge

lift-off technique (see chapter 4,  section 4.5).
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Figure 2.8a  Steady state lumped thermal impedance for bismuth microbolometer of various

lengths.  The bolometer width was fixed at 2 µm, while the thickness was scaled

for constant thermal and electrical impedance to the antenna leads.
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The results presented here suggest that the net thermal impedance of the device

is relatively insensitive to changes in detector length for lengths greater than about 1

µm, with an optimum detector length for maximum thermal impedance near 2 µm.  For

long detectors (length > ~4 µm), heat loss is dominated by heat conduction directly into

the substrate, and can accurately be approximated by equation 2.11.  For short

detectors (length ≤ ~ 1 µm), heat loss appears to be strongly dominated by the fringe

mechanism and increases sharply with decreasing detector length.  The impedance

curve for the fringe mechanism was extended to zero at length=0  since the fringe

impedance would be expected to approach zero as the detector leads are brought

together.  The curve for the fringe mechanism appears to be linear; at least for short to

moderate detector lengths.  Due to the nature of these particular calculations, the error in

the fringe impedance values will increase as the detector length increases.  Fortunately,

the influence of the fringe mechanism becomes negligible for this case and will not be

important in computing the net thermal impedance.

It should be strongly noted that the curves in figure 2.8a and figure 2.8b are for

a specific detector width, substrate thermal conductivity, and detector thermal

conductivity.  Since the detector thickness was scaled to allow for constant electrical

resistance of the detector, the value of Zd will be dependent on the resistance chosen, as

well as the σ k ratio of the detector material.  Variations in theses detector parameters

will causes the Zd values to shift up or down.  For the line width chosen for these

curves, however, Zd was an insignificant component of the net thermal impedance for

all detector lengths.  As the line width is reduced, Zsub would be expected to increase

(as described by equation 2.11), while Zd would remain constant.  Therefore, Zd

would be expected to become a significant component of heat loss for very small

detector widths.  The influence of line width on Zfringe, however, is less clear.  At a

fixed detector length, the Zfringe values would likely increase with decreasing width,

though the quantitative dependence on the width is unknown.  Zfringe values will also

be influenced by the thermal conductivity of the substrate and detector, Zsub, and Zd.

Future studies should address these influences.
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2 . 2 . 1 Responsivity

One key figure of merit to consider when designing and optimizing

microbolometer performance is responsivity (r), since the signal voltages can be quite

low for these devices.  A typical bismuth microbolometer has a responsivity of about

20 volts/watt, and noise equivalent power (NEP) on the order of 10−10 watts hertz .

The minimum detectable power will produce a signal in the nano-volt to micro-volt

range for measurements taken in the 1-1000 Hz range.  Detectors with higher

responsivities could ease the amplification requirements in receiver systems by making

it easier to detect these small signals.  The thrust of the modeling presented here will be

toward maximizing the responsivity of antenna-coupled microbolometers.

The signal voltage for a microbolometer can be related to the incident power by

using a simple circuit expression for responsivity, given by

r = Ib ⋅ dRD

dPL







    
volts

watt






 (2.14)

where Ib is the dc bias current through the detector, and 
dRD

dPL
 is the change in

resistance of the detector due power absorption in the load.  For conventional

bolometers, the load element also acts as the detector.  The subscripts allow this

expression to also describe composite microbolometer operation, where the load and

the detector are separate elements.

According to equation 2.14, the responsivity can be optimized by maximizing

the product of Ib and  
dRD

dPL

.  By breaking these terms into physical constants, the role

of the material properties becomes much clearer.  This relationship with physical

properties is dependent on the limiting mechanism of operation.  The maximum bias

current, for instance, is likely to be limited by one of four things:  1) Thermal Limits

of the detector due to I2R (joule) heating,  2) Current density limits in order to

avoid electromigration failure in the detector element, or due to the critical

superconducting current density in superconducting materials; 3) Bias-induced
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electric field breakdown across either the detector material or the dielectric between

the detector and the load, or 4) Instability of the detector.

2 . 2 . 2 Thermally Limited Behavior

A microbolometer will experience heating due to the bias current as well as from

incident power.  By far, most of the power will come from the bias source across the

detector.  The maximum allowable temperature rise above ambient (∆Tmax)

∆Tmax = Tmax − Tamb  (2.15)

due to the maximum allowable dc bias power (Pmax) is

∆Tmax = Pmax ⋅ ZD  (2.16)

where ZD is the thermal impedance of the detector, defined as

ZD = dTD

dPD

 (2.17)

Since the power dissipated in the detector is mostly due to joule heating from the bias

source, ∆Tmax can be represented as

∆Tmax = Imax
2 ⋅ RD ⋅ ZD  (2.18)

The maximum allowable detector bias current (Imax), in terms of the maximum allowed

temperature rise, is then
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Imax = ∆Tmax

RD ⋅ ZD
 (2.19)

The second term in equation 2.14 can be broken down into the following

physical constants

dRD

dPH

= RD ⋅ αD ⋅ ηth ⋅ ZH  (2.20)

where αD is the temperature coefficient of resistivity of the detector material

αD = 1

RD

⋅ dRD

dTD

 (2.21)

ηh is defined as the thermal coupling efficiency between the heater and the detector

element

ηth = dTD

dTH

 (2.22)

and ZL is defined as the thermal impedance of the heater element

ZL = dTH

dPH

 (2.23)

For a conventional bolometer, ZL = ZD,and ηh  = 1.

Substituting equations 2.19 and 2.20 into equation 2.14 reveals a new

expression which relates to the physical constants to microbolometer responsivity for

the thermally limited case.

r = ∆Tmax ⋅ RD ⋅ αD ⋅ ηth ⋅ ZH

ZD









  (2.24)
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The bracketed terms are related, and cannot be varied independently.  For convention

bolometers, this relation can be reduced to

r = ∆Tmax ⋅ RD ⋅ αD ⋅ ZD  (2.25)

The relations in equations 2.24 and 2.25 can be useful in evaluating the

potential detector materials and configurations.  The square root dependence on

∆Tmax shows that the responsivity may be improved by using detector materials that

can withstand high temperatures.  Materials which are resistant to oxidation and melting

would make good candidates.  Bismuth, because of its low melting point, is not

capable of high temperature operation.  ∆Tmax could also be increased by lowering the

ambient temperature of the system.  This is also likely to improve NEP by reducing the

thermally-induced component of noise.  However, the thermal conductivities of some

materials, such as sapphire, increase with decreasing temperature, resulting in lowered

thermal impedances.  For composite structures, the dielectric layer must also be able to

withstand operation at high temperatures.  Because ∆Tmax has only a square root

dependence, however, it is unlikely that this term alone would increase the responsivity

by more than a factor of two.

The relations above also indicate that an improvement in responsivity would result from

an increase in the thermal impedance of the detectors.  It has been shown

experimentally that preventing the detector from contacting the substrate by use of air-

bridges increases the responsivity of a microbolometer by increasing the thermal

impedance of the detector[4].  This method was reported to have increased responsivity

by a factor of five, and the sensitivity was improved by a factor of  four.  Choosing

detector materials to minimize thermal conductivity would also serve to increase thermal

impedances.  This criterion would tend to favor semiconductor or oxide materials over

metallic detector materials.  Choosing a high resistance detector may also be an easy

way to increase responsivity.  Even though this term has a square root dependence for

the thermally limited case, it would be easy to find a detector material with a resistivity

of many orders of  magnitude higher than bismuth.  For conventional microbolometers,

the detector resistance is fixed in order to be impedance matched to the antenna.  For

composite structures, this restriction does not apply.  The strong linear dependence of
αD on responsivity also makes this a key parameter in detector material choice.
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2 . 2 . 3 Current Density Limited

Another mechanism which may limit responsivity by limiting the driving current

through the detector may be device failure due to electromigration.  The current density

may also be limited in the case of superconducting microbolometers.  In this case, it is

assumed that the maximum allowable current is determined by the maximum allowable

current density through the detector element, rather than a maximum allowable

temperature rise.  Although electromigration damage is generally dependent on

temperature in most systems, this analysis will assume that the increase in temperature

due to the bias current will be small and thus have a negligible effect on the maximum

current density.

Equation 2.26 shows an expression for responsivity that is algebraically

identical to equation 2.14.

r = Ib ⋅ R ⋅ α ⋅ Z  (2.26)

The maximum allowable current (Imax) can be related to the maximum current density

as

Imax = Jmax ⋅ t ⋅ w  (2.27)

where t is the detector thickness, and w  is the detector width.  The detector resistance

can be expressed as

R = ρ ⋅ L
t ⋅ w

 (2.28)

where ρ is the resistivity of the detector material, and L is the physical length of the

detector.  Substitution of equations 2.27 and 2.28 into 2.26, where Ib = Imax results

in the following expression for the dc voltage responsivity.

r = J ⋅ρ ⋅ α ⋅ L ⋅ Z  (2.29)
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For the case of the air-bridge bolometer [4], the thermal impedance will be independent

of the detector length (see section 2.1.2).  For a given detector material, the length of

the airbridge will determine the maximum responsivity of the device.

For moderately long substrate supported microbolometers, the thermal

impedance is primarily determined by heat flow directly into the substrate.  An

empirical approximation for this case was presented in section 2.1.3, and is shown in

equation 2.11.  By using equation 2.11 to approximate Z, the responsivity can be

expressed as

r = 1.2 ⋅ J ⋅ρ ⋅ α
ksub ⋅ 2 ⋅ π

⋅ L
w







0.4

 (2.30)

This equation will over estimate the responsivity for short detector lengths due to the

fringe mechanism of heat loss described in section 2.1.4.

These relations show that for bolometers in which bias current is limited by

current density, there is a linear dependence on ρ as well as α .  This criteria would

favor bismuth over other metals as a detector material.  Materials which are resistant to

electromigration would also be favored for this case.
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2 . 2 . 4 Thermal vs. Current Density

Experiments have shown that typical bismuth microbolometers with the

following properties can be operated reliably for long periods of time at 2 milli-amps.

The devices become unreliable at around 3 to 5 milli-amps.

length width thickness resistance responsivity α
4 µm 2 µm 1500 Å ~ 100 Ω ~ 20 volts/watt ~ 0.003 K-1

Table 2.4   Operating parameters for a typical bismuth microbolometer

For the dimensions listed in table 2.1, the current density at 0.003 amps would be 106

amps/cm2, which suggests the possibility that failure may be due to electromigration

damage.  

The temperature rise due to the bias current can be approximated by using

∆T = r ⋅ Ib

α
 (2.31)

This estimates a 20 ˚C temperature rise above ambient (~300 K) when biased at about

0.003 amps.  This temperature of ~45 ˚C is much lower that the melting point of

bismuth (544 ˚C), which makes it unlikely that failure is due to melting of the bismuth

element.  Failure due to oxidation is also unlikely if these temperatures are accurate.

Though the observations shown here are not entirely conclusive, they do

suggest that electromigration is the most likely mechanism for limiting current in

bismuth microbolometers.
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2 . 2 . 5 Electric Field Breakdown

Composite microbolometers have an extra vulnerability that does not exist with

conventional microbolometers, in that voltage differences between the heater and the

detector element will result in high electric fields within the dielectric that separates the

two elements.  The likelihood of accidentally stressing the dielectric may be reduced by

grounding one lead of the antenna to one of the detector leads.  The dielectric will also

experience electric fields due to the detector bias voltage.  The electric circuit for electric

fields induced by the bias voltage is illustrated in figure 2.9. The highest fields will be
at E1, where they will be roughly   

Emax ≈ VD

2 ⋅ tdie

 (2.32)

where VD is the detector bias voltage, and tdie is the thickness of the dielectric material

that separates the heater from the detector.

E1 E2 E3 En

V detector

Heater Element Width

Detector Element Length

Figure 2.9  Electrical circuit for a composite microbolometer showing the distribution of

   electric field within the dielectric.
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If electric field-induced breakdown is the limiting factor, then the maximum

responsivity can be given as

r = VBD ⋅ αD ⋅ ηth ⋅ Zth  (2.33)

where VBD is the breakdown voltage of the device.

This behavior would be more likely for high resistance detectors where high

bias voltages (> 10 V) could be used without dissipating much power.  For a dielectric

thickness of 1000 Å, only 10 volts would be needed to produce an electric field of 106

V/cm, which is about the breakdown field of a good physically-deposited dielectric

material.  The electric field through the dielectric could be reduced by using a thicker
dielectric, but at the expense of lowering the thermal coupling coefficient (ηh).

Leakage currents through a stressed dielectric may also contribute significantly to signal

noise.
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2 . 2 . 6 Microbolometer Stability

Another issue which affects microbolometer operation and can limit

responsivity is stability under constant bias conditions.  Using a higher bias across the

detector will generally increase responsivity and thus will result in a larger signal.  A

linear relationship between bias current and responsivity is described in equation 2.14.

and implies that it will be linear as long as the other parameters (dR/dT, α , k) remain

independent of bias current.

It is important to remember that there are two components of power that are

dissipated in the detector.  The incident radiation received from the antenna is one

component dissipated in the detector, and will be considered an independent variable

for this analysis.  The other component is power dissipated from the bias current,

which will normally be much higher than the incident power.  The key point is that
incident power (Pincident) can influence the bias power (Pb) by changing the detector

resistance.  This will result in either positive or negative feedback, depending on

whether the device is biased at constant current or constant voltage, and whether the

detector has a positive or negative temperature coefficient of resistance.

Table 2.5 shows the conditions which result in positive or negative feedback.

    Bias       typeTemp.                                         Coeff.       of        Resistance                                  Type       of        Feedback

constant current α  > 0 positive

constant current α < 0 negative

constant voltage α > 0 negative

constant voltage α  < 0 positive

Table 2.5  Feedback bias relationships

For example, under constant current bias and a positive coefficient of resistance

(α > 0), incident power will increase the resistance of the detector.  Since the bias
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current is held constant, this will increase the bias power, thus further increasing the

resistance and further increasing the bias power.

Experience has shown that some operating conditions can result in unstable

positive feedback where runaway current destroys the device.  I have seen instabilities

even in large area (100 µm x 1000 µm) superconducting Bi-Sr-Ca-Cu-O bolometers[5]
when operated at high currents, although these devices were large enough to dissipate a

10 volt bias without destroying themselves.  Superconducting devices could be voltage

biased in order to avoid positive feedback; however, destructively high currents could

occur if the device temperature drifts too close to the superconducting state.  In these

cases, the maximum bias conditions are lower than what would be predicted when

positive feedback effects are ignored.  In order to better understand and predict the

maximum stable bias, an analysis is given here.

The following definitions will be used for this discussion:

r = small signal responsivity  = Ib ⋅ dR

dP
  =   Ib ⋅ dR

dT
⋅ Z   [V / W ]

Ib = bias current [I]

Z  = Thermal Impedance  =   
dT

dP
 

°C

W






∆Vn =  Incremental feedback voltage across detector calculated at nth iteration.

Po    = Instantaneous Power at time = 0.  (Bias + Incident.  Does not include 

feedback)
∆Pn = Feedback power calculated at nth iteration.

From the above definitions, ∆V1, the initial voltage change across the detector due to

the bias power and the incident power,  can be expressed as:

∆V1 = r · Po (2.34)

The incremental increase in power dissipated in the detector (joule heating) caused by

the increased bias voltage can be expressed as:

∆P1 =  ∆V1 · Ib = r · Po · Ib (2.35)
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This increase in power in the detector then causes another incremental increase in

detector voltage that can be expressed as:

∆V2  =  r · ∆P1  =   r · Po · [r · Ib] (2.36)

Further iterations of the incremental increases in bias voltage due to feedback can be

expressed as:

∆Vn  =  r · Po · [r · Ib]n-1 (2.37)

The total increase in detector voltage due to feedback can then be expressed as:

∆VFeedback = r ⋅ P0 ⋅ r ⋅ Ib( )m

m=0

∞

∑ (2.38)

By using the following relation:

Az

z=0

∞

∑ = 1

1 − A
        for  (A < 1) (2.39)

the total feedback voltage can then be expressed as

VFeedback = r ⋅ P0

1 − r ⋅ Ib

(2.40)

From this relation it is apparent that the following must be true for stable operation:

r · Ib < 1   (For stable operation) (2.41)

Another form of this relation looks like:

Ib
2 ⋅ dR

dT
< 1

Z
(2.42)
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These results suggests that high resistance detectors would be more stable than low

resistance detectors.   This criterion should be considered when modeling low

resistance detectors, such as superconducting microbolometers.  However, if high

resistance detectors are integrated with a composite microbolometer structure, operation

may be limited by electric field breakdown in the dielectric between the heater and the

detector.
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