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Chapter 2

MICROBOLOMETER THEORY

In this chapter, the basics of microbolometer operation are covered.  The

general theory of bolometer-type detectors is discussed in some detail, as well as

their performance limitations.  A thermal model for predicting bolometer

performance will be introduced.  This model and the analytical theory will then be

related to the experimental results for a bismuth microbolometer.

2.1 Operation

It was pointed out in chapter 1 that microbolometer operation depends on a

change in resistance as a function of temperature.  To perform as a detector, there

must be some method for introducing the radiation.  A biasing network is also

required to maintain current through the bolometer and to sense changes in its

resistance.  Figure 2.1 shows a bow-tie antenna-coupled microbolometer.  This is a

quasi-optical system in which the radiation to be detected is focussed on the antenna

with a hemispherical lens.  The radiation passes through both the lens and the

substrate before reaching the antenna,  where it induces a current which is dissipated

in the microbolometer.  To sense changes in the detector temperature, the leads on

either end of the antenna are connected to a  biasing circuit.  A stable current source

is provided by a battery in series with a large bias resistor.  A lock-in amplifier or an

oscilloscope may be used to read the detected signal.

Whereas conventional bolometers operate by a particle or photoelectric

phenomenon, radiation is electromagnetically  coupled to the planar antenna.  In

conventional bolometers, orientation of the electromagnetic field is not important.

In most planar antennas, however, the degree of coupling between the radiation and

the antenna strongly depends on the electromagnetic field orientation.  If the

radiation is properly aligned with the antenna, it will induce a current, as shown in
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Fig. 2.1:  Bow-tie antenna-coupled microbolometer.  In this quasi-optical receiver,
the  radiation is focussed on the bow-tie antenna with a hemispherical lens.  The
coupled radiation is dissipated in the bolometer element, causing a temperature rise.
The resulting change in resistance is sensed by the biasing network.
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Fig. 2.2.  This current passes back and forth through the microbolometer at the

radiation frequency, and is dissipated by Joule heating.

Most of the microbolometer work done so far has utilized the bow-tie

antenna [1].  However, coupling to the detector with a microstrip-fed twin slot

antenna has also been investigated, and this is covered in chapter 4.  Other planar

antennas which may be mated with microbolometer detectors are the vee [2,3] and

the spiral [4,5].  For the bow-tie antenna on a dielectric, electromagnetic radiation is
confined to within about two dielectric wavelengths (λdiel) of the apex [6].  By

reciprocity, the antenna therefore only receives radiation within about 2 λdiel of this

apex. This property of the bow-tie antenna allows for the extension of the bow arms

for use as dc leads.

Fig. 2.2:  Electromagnetic radiation induces current in the bow-tie antenna.  Notice
that orientation of the electromagnetic field is important.
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A characteristic of planar antennas is that they absorb radiation better from

the substrate side than the air side.  This is most easily understood by looking at the

antenna as a current source, as shown in Fig. 2.3.  A current source will deliver

maximum power to a short circuited load.  It will therefore deliver more power to

the lower impedance substrate than the higher impedance air.  It turns out that more
power will flow through the substrate than to the air by about an εr3/2 to 1 ratio [7].

Again invoking reciprocity, the antenna will therefore receive more radiation from

the substrate side.

The signal voltage v generated by a change in temperature for a

microbolometer detector is

v = Ib (dR/dT) ∆T (2.1)

iZsub Zair

+

-

v

Bow-tie an tenna

Fig. 2.3:  In the transmission line equivalent circuit, a bow-tie antenna sees both the
substrate and air.  The substrate has a higher dielectric constant, and therefore a
higher impedance.  Since the current source representing the antenna will deliver
more power to the larger impedance, more power is coupled to the substrate.
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where Ib is the bias current, dR/dT is the change in resistance of the bolometer for a

given change in T, and ∆T is the temperature change.  By an electrical analogy, ∆T

= P |Zt| , where the change in temperature ∆T, absorbed power P, and magnitude of

the thermal impedance |Zt| are analogous to voltage, current, and resistance,

respectively.  Thus, responsivity r is given by

r = v/P = Ib (dR/dT) |Zt| . (2.2)

A characteristic of a microbolometer detector is its linear relation between resistance

and dissipated power.  This property assumes that dR/dT is constant over the

temperature range considered, and that the temperature change in the device is

proportional to changes in its dissipated power.  This leads to an expression for dc

responsivity [8], (the response of a detector to a step change in dissipated power),

rdc =Ib (dR/dP) . (2.3)

The dc curve of R plotted as a function of P therefore provides enough information
to determine r and |Zt| for the device.

The microbolometer is a thermal detector; its thermal mass is too large to

permit temperature changes from following the high frequency (>100 MHz) signal.

However, the thermal mass is small enough for the microbolometer to follow a

slower modulation frequency (<1 MHz).  The next section shows how

microbolometer responsivity is a function of modulation frequency.

2.2 General Theory

The general theory behind bolometer operation was first described in detail

by Jones [9] in 1953.  Other works have emerged since then which clarify the

theory [10,11].  To aid in a discussion of this theory applied to a microbolometer, the

variables used are summarized in Table 2.1.

The general case of a current biased bolometer will be treated.  By choosing

a current bias, current dependent resistance can be excluded from the derivation.  
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a radius of hemisphere representing
area of contact between the
bolometer and the substrate

T temperature of the bolometer

C thermal capacity of bolometer To ambient temperature

Cs specific heat of the substrate v voltage across the bolometer

G thermal conductance between
bolometer and surrounding
thermal environment

Wo radiation power dissipated by the
bolometer

Ib bias current through the
bolometer

∆T change in temperature

Ic critical current for thermal
runaway

∆Tp peak change in temperature

r responsivity ρs density of the substrate

R resistance across the bolometer τ time constant of the bolometer
Rb bias resistance of the bolometer ωm 2π times the chopping (or

modulation) frequency

Table 2.1: Variables associated with microbolometer theory.

Such a dR/dI term has been included in a similar derivation by Maul and Strandberg

[12].  The voltage to be detected across the bolometer is

v = IbR . (2.4)

The resistance will change as a function of temperature, and thus of absorbed

power.  With no radiation applied, temperature of the bolometer is governed by

Joule heating from the bias current, and the conductance of heat out of the

bolometer, as given in the heat balance equation

G(T-To) = Ib2 Rb . (2.5)

Here it is assumed thermal conductance accounts for all the heat loss.  Now incident
radiation is applied, and chopped at a modulation frequency ωm, such that radiation

dissipated by the bolometer W is

W = Wo sin ωmt (2.6)
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where Wo is the unmodulated radiation power.  For a conventional bolometer, this

dissipated power is the product of radiation incident on the detector area and the

detector absorptivity.  For antenna-coupled microbolometers, W depends on the

antenna cross section, the antenna gain, and the impedance match between antenna

and detector [13].  The heat balance equation will now include heat from absorbed

radiation, an accumulation term dependent on the change in the bolometer

temperature and the thermal capacity, and heat from the change in resistance of the

bolometer for change in T.  The new heat balance equation is

C
d(T + ∆T)

dt
 + G(T + ∆T - To) = Ib

 2(R + ∆R) + Wosin ωmt (2.7)

where the first term on the left represents heat accumulation, the second term is the

heat flow out of the bolometer, and the terms on the right represent heat flowing in.

Equation (2.7) reduces to

C d∆T
dt

 + G∆T = Ib
 2 dR

dT
∆T + Wo sin ωmt (2.8)

or
d∆T
dt

 + Ge
C

 ∆T = Wo
C

 sin ωmt (2.9)

where Ge is an effective thermal conductance ,

Ge = G - Ib
 2 dR

dT   . (2.10)

Equation (2.9) is a linear first order differential equation of the form and general

solution

dy
dx

+ f(x)y = r(x) (2.11a)
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y(x) = e-h ehr dx + c   

 

(2.11b)

where  h = f(x) dx . (2.11c)

The integral term in (2.11b) has a solution found from the integral tables,

egx sin ωx dx  = egx

g2 + ω2
 g sin ωx - ω cos ωx  . (2.12)

Using these formulas, the solution for the change in temperature ∆T is

∆T = Wo

Ge
 2 + ωm

 2C2
 Gesin ωmt - ωmC cos ωmt  + c exp-Get

C
 . (2.13)

This is somewhat simplified using a right angle identity to get

∆T = Wo

Ge
 2 + ωm

 2C2
 sinωm t - tan-1 ωm C

Ge
  +c exp-Ge t

C
  . (2.14)

The exponential term in (2.14) is important.  If Ge is zero or negative, the

temperature will rise indefinitely, leading to a thermal runaway condition known as
‘bolometer burnout’.  For materials with a negative α (such as Bi and Te), Ge as

given in (2.10) will always be positive and ∆T will decay with time constant

τ = C/Ge.  For superconducting materials, however, α is positive and can be quite

large, and Ge could conceivably be negative.  In this case, the temperature would

rise until the device was no longer operating in the high α transition region.  A

critical current Ic that marks the onset of instability can be determined.  Setting Ge =

0 in (2.10),
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I c
2

=
G

dR
dT

. (2.15)

Thermal runaway can be avoided by limiting Ib to a fraction of the value of Ic.

Typically, a value of 0.5 is used.
Assuming Ge is positive, ∆T is now a sinusoidal response to the chopped

radiation, with a peak amplitude

∆Tp = Wo

Ge
 2 + ωm

 2C2  .
(2.16)

The detected voltage across the bolometer will fluctuate by

v = Ib dR
dT

 ∆Tp (2.17)

so that

v = 
Ib dRdT Wo

Ge
 2 + ωm

 2C2
 . (2.18)

The responsivity is this v divided by Wo, or

r =
I b

dR
dT

Ge
2

+ ωm

2
C

2
.

(2.19)

From (2.2) and (2.19), the thermal impedance is determined to be

Zt = Ge
 2 + ωm

 2 C2  -1/2 . (2.20)

The thermal conductance term can be expanded as
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Ge = Gs + Ga + Gm - Ib2 dR/dT (2.21)

where Gs, Ga and Gm correspond to thermal conductance from the bolometer into

the substrate, air, and metal antenna leads, respectively [14].  For a typical 4 µm x
4 µm antenna-coupled microbolometer, Ga is much smaller than either Gs or Gm
(Ga < .1% Gs), so it is neglected.  The change in Joule heating term, Ib2dR/dT,

cannot be neglected since it is within an order of magnitude of Gm.

The thermal conductivity through the metal leads, Gm, is considered

frequency independent; a fairly valid approximation given the relatively high

conductivity of the antenna metal.  The term for thermal conduction into the
substrate Gs is frequency dependent.  Hwang et al. [14] calculated Gs as a function

of frequency, modeling the microbolometer as a point source of heat, and found

Gs = 2πksa(1 + a/Ls) (2.22)

where ks is the substrate thermal conductivity.  The term a is the radius of a

hemisphere representing the bolometer to substrate contact area.  For convenience,
2πa2 = A , where A is the actual contact area.  Ls is a complex heat diffusion length

Ls = ks
jωρsCs

1 2 (2.23)

where Cs is the substrate heat capacity.

The complex thermal impedance term can be expressed as

Zt = Gs + Gm - Ib
 2 dR

dT
 + jωCb

-1
  . (2.24)

Now, following Neikirk [15], the frequency independent terms are lumped together
into a single dc conductance term Gdc, and the magnitude of Zt is
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Zt = [Gdc
 2

 + 2Gdcπa2 2ksρsCsω + 4π2a4ksρsCsω
 

 + 2πa2C 2ksρsCsω3/2 + C2ω2] -1/2 .

(2.25)

Equation (2.25) may be inserted into the responsivity equation (2.2) in order

to estimate values of r as a function of frequency.  The advantage of such an

equation is the ability to quickly calculate the responsivity behavior as a function of
substrate and bolometer material parameters, and device size.  However, both Gdc

and a are chosen as adjustable parameters to match the analytical model to

experimental data.  Also, this equation does not consider the effect of the thermal

conductivity of the detector material.  For the Bi microbolometers manufactured by
Neikirk [8], values of a = 1.35 µm and Gdc=1.5x10-5W/K gave best fit to data.

Figure 2.4 shows several r-f plots which highlight the sensitivity of device
performance to several parameters.  The material parameters for quartz (kQ,CQ,ρQ)

and for bismuth (dR/dT, CBi, and ρBi) are values taken from the literature [15-
161718].  Figure 2.4a shows that the dc conductance term Gdc effects the low

frequency response of the device.  Higher responsivities are obtained for minimal
Gdc.  This observation prompted Neikirk to construct an air-bridge microbolometer,

where each end of the device contacts the antenna metal, but the detector is not in
direct contact with the substrate [19].  Gdc is therefore minimized, and dc

responsivities roughly 5 times higher than those from substrate-supported

microbolometers were obtained.  The air bridge structure also makes the substrate

contact radius a essentially zero, resulting in a much sharper knee in the r-f plot.  In

Fig. 2.4b, reducing a makes the knee sharper.  This plot also shows that high

frequency performance can be improved by making the device, and therefore a,

smaller.  A smaller device will also have a lower heat capacity, resulting in a speed

improvement as shown in Fig. 2.4c.  This figure also shows that low frequency

performance is not effected by the detector heat capacity.
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Fig. 2.4: Responsivity vs
frequency curves show
sensitivity of performance
on the parameters (a) Gdc,
(b) a, and (c) CBi.

Default       parameters
(bold lines)

Ibias = 1.0 mA

Gdc = 1.5 x 10-5 W/K
a = 1.35 µm
length = width = 4µm
thickness = 1000Å

Quartz:
kQ = 0.014 W/cm-K
CQ = 0.18 cal/(g-K)

ρQ = 2.20 g/cm3

Bi:
dR/dT = -0.3 Ω/K
CBi = 0.027 cal/(g-K)

ρBi = 9.8 g/cm3
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2.3 Noise

The true measure of a detector’s performance is how well it extracts a signal

from the surrounding noise.  Sensitivity is therefore expressed as noise equivalent

power, or NEP.  NEP can be defined as that amount of power absorbed by the

detector which gives a signal-to-noise ratio of 1.  From (2.2), substituting noise
voltage Vn for the signal voltage v, and NEP for the absorbed power P,

NEP =
Vn

r
. (2.26)

A receiver circuit is vulnerable to a host of noise sources.  Amplifier noise is

significant for the far-infrared spectral region, and in fact may limit performance in

some applications [20].  At the detector level, the most significant sources of noise

are flicker noise, Johnson noise, and temperature noise.

Flicker noise, also called 1/f noise and contact noise, provides a motivation

for chopping or otherwise modulating the incoming radiation at as high a frequency

as possible.  In general, 1/f noise depends on the cleanliness or quality of the

contact interfaces.  This is why multiple metal layer devices have better noise

performance when they are fabricated in-situ, rather than in several vacuum

evaporation steps [8].  This type of noise appears to be less a factor for antenna-

coupled devices with low current bias and high responsivity [13].

Johnson noise is associated with bolometer resistance, and is a result of

random movement of charge carriers in a resistor.  Since electron movement

increases with temperature, Johnson noise is also called thermal noise [21].

Johnson noise voltage may be written

vj2 = 4kTR∆f (2.27)

where vj2 is the mean noise voltage squared, k is Boltzmann’s constant, T is the

temperature, R is the bolometer resistance, and ∆f is the bandwidth.  This kind of

noise decreases as the square of responsivity, and the NEP resulting from Johnson
noise (NEPjn) is given by
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(NEPjn)2 = 
vj

2

r2
  . (2.28)

Like 1/f noise, Johnson noise may be relatively small for antenna-coupled devices

with high responsivities.

The fundamental limit for bolometer detectors is temperature noise (also

called phonon fluctuation noise), which arises from random thermal fluctuations

between the bolometer and its surroundings [22,23].  For devices where heat transfer

is by conduction only, the standard form of the temperature noise is

∆T2 = 4kT2G∆f
G2 + ω2C2

(2.29)

where ∆T2 is the squared mean temperature fluctuation.  For most

microbolometers, ωC<<G for modulation frequencies less than 1 MHz, and (2.29)

becomes

∆T2 = 4kT2∆f
G

  . (2.30)

This temperature noise can be converted into a noise power by using the NEP

relationship

NEP =
vn∆f

-1/2

r
(2.31)

where vn is the temperature noise voltage for the device.  This noise voltage is

simply related to the temperature fluctuation by

vn = Ib dR
dT

∆T . (2.32)
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Considering the responsivity relation

r  = Ib dR
dT

 1
G , (2.33)

the NEP resulting from temperature noise (NEPtn) can be written

(NEP)tn = 4kT2G  . (2.34)

The squared NEP terms may be added arithmetically to obtain total squared NEP.
In section 2.5, the NEPtn calculated from (2.34) will be compared with the

NEP of an actual Bi microbolometer.

2.4 Finite Element Thermal Model

Thermal models for the bolometer structures studied in this work are useful

for understanding device operation, giving the experimentalist a good physical

understanding of the device and a better understanding of its limitations.  Further, a

model might point the way to improvements in device design.  A simple analytical

model was used in section 2.2 to predict the performance of a substrate-supported

bolometer [14].  The model was fairly practical since assumptions could be used to

simplify device geometry.  More complicated structures like the composite

microbolometer cannot be simply modeled.  Instead, a finite difference type of

approach can be used.

The bow-tie microbolometer structure shown in Fig. 2.5a will be used to

demonstrate the finite difference approach.  Since the device is symmetrical, only

one-half of the structure will be treated.  The cut portion now rests against a perfect

insulator (Fig. 2.5b).  The thermal model device profile of Fig. 2.5b is shown in

Fig. 2.6.  Only a two dimensional model is considered; effects in the y-direction

will be neglected.  Figure 2.6 shows the device broken up into a grid of rows and

columns, with nodes chosen at the center of each element.  To reduce complication

in the calculations, the detector and antenna portions are considered to occupy a

single row.
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(a)

an tenna

microbolomet er

insulator

(b)
Fig. 2.5: A bow-tie antenna-coupled microbolometer (a) is symmetrical about the
center.  The thermal model therefore considers only half of the device, where the
‘cut’ portion of the microbolometer rests against an insulator (b).

For a single element, properties of interest are the thermal capacitance, the

thermal resistances in the x and z directions, and for the detector region only the

electrical resistance in the x-direction (see Table 2.2).  A further simplification

assumes electrical resistance of the antenna is zero, and the substrate has an infinite

electrical resistance.  The heat generation in the detector elements must also be

considered.  An electrical analog to the thermal model is shown in Fig. 2.7 for

several cases.  In Fig. 2.7a, the thermal resistance between two nodes is just the

sum of 1/2 the resistance of each of the two elements.  Figures 2.7b and 2.7c show

the cases for an element adjoining an insulator and a heat sink, respectively.

Using this model, the steady state (dc) operation is first examined in section

2.4.1.  This is useful for predicting rdc, and for generating isothermal plots.  Then,

in section 2.4.2, the time dependent case is discussed.  The program for the finite

element thermal model is listed in appendix A.
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Fig. 2.6: The  thermal model profile for the bismuth microbolometer shown cut in

half in Fig. 2.5b.  The grids define elements used in the Gauss-Seidel iteration.

Thermal Resistance:

(K/W)
Zx =

∆x

k ∆y ∆z
Zz =

∆z

k ∆y ∆x

Electrical Resistance:

(Ω)
Rx =

∆x

σ ∆y ∆z
Rz =

∆z

σ ∆y ∆x

Thermal Capacitance:

(cal/K)

mC = ρ C ∆x ∆y ∆z

Table 2.2:  Thermal properties of interest for a single element in the thermal grid.
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Fig. 2.7: Electrical analog of the thermal model shows how resistance (electrical or
thermal) is calculated between element-centered nodes.  In (a), the resistance
between nodes 1 and 2 is just the sum of half the node 1 resistance and half the node
2 resistance.  In (b), element 2 is an insulator, so the total resistance between the
two nodes is infinite.  In (c), element 2 is a thermal (or electrical) ground, and the
resistance between the two nodes is just half the resistance of element 1.

2.4.1 Steady State Case

At steady-state, the temperature at each node is calculated using the Gauss-

Seidel iteration:

Ti = 

qi + ∑
j

Tj

Zij
 

∑
j

1
Zij

 

(2.35)
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where Ti and Tj are the temperatures of the ith and jth element, qi is heat generated

in the ith element, and Zij  is the thermal resistance between the ith and jth element.

In our calculations, the heat generation term in a detector element will depend on the

bias current applied (Ibias) and the electrical resistance of the element Ri, so

qi = Ibias 
2 Ri . (2.36)

A bolometric detector works by changing resistance in response to changes in

temperature.  The dependence of the resistance of an element Ri to the temperature

Ti is given by

Ri = Rio (1 + α(Ti - To)) = Rio + (∆R/∆T) ∆T  . (2.37)

Thus, for a given ambient temperature and a chosen bias current, the iterative

procedure for steady-state is as follows:

1) determine thermal resistances in both the x and z directions for all elements.

These are assumed constant for our degree of temperature change.

2) determine electrical resistances for all detector elements in the x-direction at

temperature Ti using (2.37).  Initially, all elements are at ambient temperature.

3) determine qi from (2.36).

4) Use (2.35) to determine a new set of temperatures Ti.

5) Cycle through steps 2-4 until the changes in Ti are small.

This iterative technique has been applied to the Bi microbolometer detailed in

Fig. 2.4.  An isothermal plot of the device at steady state is shown in Fig. 2.8.

How far the isothermal lines descend into the substrate depends directly on the

substrate thermal conductivity.  Ideally, the isotherms will be bunched near the

surface, and not much heat will be lost to the substrate.
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Fig. 2.8: Isothermal plot for the bismuth microbolometer detailed in Fig. 2.4.
Ambient temperature is 300 K.

2.4.2 Time Dependent Case

To predict how the microbolometer would perform as a detector, a small rf

power is applied.  The thermal capacitance Ci of each element is now very

important.  The new equation is

Ti
 p+1 = 

qi + 
 

∑
j

Tj
 p+1

Zij
 + Ci ∆τ TiP 

∑
j

1Zij
 + Ci ∆τ 

(2.38)

where Tjp is the temperature of an element at a specific time, and Tip+1 is the

element temperature a time ∆τ later.

The heat generation term in each element now also depends on the rf power

applied.  Adding an rf current gives
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Itot = Ibias + Irf cos(ωct) (2.39)

where Irf is the magnitude and ωc is the carrier frequency, and the heat generation

term becomes

qi = Itot2Ri  . (2.40)

Inserting (2.39) into (2.40) and integrating the current over one rf cycle,

qi = (Ibias2 + π(Irf2))Ri  . (2.41)

In the time dependent case, we are really interested in determining the signal

voltage produced by a given amount of input power, and how this responsivity is

related to modulation frequency of the input power.  Thus, the magnitude of Irf will

be modified by a modulation frequency ω for a sinusoidally varying applied power,

Irf(1/2(1 + cos ωt)).  The voltage that can be measured across the detector is

V = IbiasRdet (2.42)

remembering that the rf power is confined to within about 3 λ of the region of the

detector for a bow-tie antenna.  The detected signal is then Vmax - Vmin .

The time increment, fixed by stability arguments, is

∆τ  ≤   
Ci

 

∑
j

1 Zj
 

min

.
(2.43)

Examination of this criterion for several worst cases are shown in Table 2.3.  Notice

that ∆τ is on the order of picoseconds when the antenna metal is considered since

the thermal conductivity is so high.  Such a small time increment would require a

very long run time for the time dependent program.  However, steady state analysis

shows the temperature of the silver next to the detector to be very
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center

element:

Bi Ag Quartz

C(µW-sec/°K) 984 x 10-9 295 x 10-9 487 x 10-9

Zx 0.1724 775 x 10-6 0.256

Zz 0.0431 436 x 10-6 0.401

∆τ (nsec) 45(1) 76 x 10-3(2) 25(3)

Q.

Q. Q.

sink

(3)

Ag Bi Bi

Q.

(1)

sink Ag Ag

Q.

(2)

Table 2.3: “Worst-case” situations used to determine the maximum time step
allowed for stability with each element 0.2 µm long.  If the silver antenna lead is
considered a perfect ground, then the quartz element at the corner of a thermal sink
(#3) is the limiting case.

close to ambient.  Thus, the antenna leads are treated as thermal grounds.

The approach is to determine a ‘dc’ response by finding the steady state

voltage difference between a steadily applied rf current and a totally off rf current.

Since frequencies below 100 kHz would require an exorbitant amount of computer

time, data will be limited to only a few data points above 100 kHz.

In Fig. 2.9, the Bi microbolometer default case of Fig. 2.4 is compared with

thermal model data in a responsivity-frequency plot.  For the thermal model, the

parameters σBi and kBi are adjusted to give a steady state resistance of 100 Ω, and a

dc responsivity of -16 V/W.
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Fig. 2.9: Comparison of analytical model (solid line) and thermal model (black
squares) for the bismuth microbolometer detailed in Fig. 2.4.  In addition to the
properties listed in Fig. 2.4, from the thermal model σBi = 980 (Ω-cm)-1, and
kBi = .015 W/(cm-K).

2.5 Bismuth Microbolometer

Bismuth microbolometers have been fabricated and tested for comparison

with the theoretical models.  The use of bismuth as a detector material as well as

microbolometer fabrication will be discussed in more detail in chapter 3.

Figure 2.10 shows the resistance of the Bi element plotted versus power

dissipated in the element.  From the slope of this plot, the dc responsivity (from

(2.3)) is calculated as -6.3 V/W at a bias voltage of 50 mV.

Figure 2.11 shows the theoretical responsivity compared with the measured

responsivity for the Bi microbolometer with the properties listed.  The solid line is

theoretical responsivity using the analytical model, and the square points are

theoretical points found using the thermal model.  The experimental points were

obtained by reading the peak-to-peak signal voltage across the bolometer resulting

from a modulated 220 MHz signal fed to the detector.  This technique is discussed

in chapter 3 for a composite microbolometer.  The number of thermal model points

are rather limited because of computation time constraints.  Also, at high
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Fig. 2.10:  Bismuth microbolometer resistance is plotted versus power dissipated.
The dR/dP slope is used to calculate rdc.

frequencies, the thermal model predicts significantly larger responsivities.  The most

likely reason for this disparity is because the finite-element model is two-

dimensional, and does not consider the extra thermal mass that exists in the y-

direction.

The noise voltage is plotted in Fig. 2.12.  Noise measurements over a

bandwidth of 10% of the selected center frequency were made using a PAR 124A

lock-in amplifier with a 117 preamp.  The experimental NEP points in Fig. 2.13 are

calculated by dividing the noise from Fig. 2.12 by the responsivity from Fig. 2.11.

A comparison is made with the theoretical NEP determined from the analytical

equation (2.34) assuming only temperature noise.  This theoretical NEP sets the

upper limit for microbolometer sensitivity.  Best measured performance was

obtained at 5 kHz, where NEP = 4.3 x 10-10 W/ Hz .  In Fig. 2.13, it is seen that

at lower frequencies the NEP is limited by 1/f noise, while at higher frequencies the

NEP increases because of a drop-off in responsivity.
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Parameters:
Vbias = 0.05 V
length = 2.5 µm
width = 5.5 µm
thickness = 1000 Å

Gdc = 2.3E-5 W/K
a = 1.0 µm
CBi = 0.045 cal/(g-K)

σBi = 480 (Ω-cm)-1
kBi = .015 W/(cm-K)

Fig. 2.11: Responsivity as a function of frequency for a Bi micro-bolometer with
the properties listed at a bias of 0.05V.  Analytical theory (solid line) is compared
with the thermal model (stars), and with experiment (squares).

2.6 Conclusions

In this chapter, the general theory of microbolometer operation has been

reviewed, leading to an analytical model.  A thermal model has also been

introduced.  Unlike the analytical model, the thermal model can be used to analyze

more complicated device geometries.  Also, the fitting parameters are all basic

material properties, whereas the analytical model requires the rather nebulous

thermal conductance and effective contact radius terms.  The drawback to this model

is the lengthy computation time required, compared to the very quick results

available from the analytical model.
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Fig. 2.12: Noise voltage measured for the Bi microbolometer biased at 0.05 V.
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Fig. 2.13: Frequency dependent NEP for the Bi microbolometer of Fig. 2.5.  NEP
from the analytical model (solid line) is compared with experiment.
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