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Frequency domain approach: 
using effective internal impedance(EII)

• not the same as standard 
surface impedance boundary 
condition (SIBC)

• inside of conducting material is 
replaced with external medium

• sheet current:  produce original 
external field and non-zero 
inside field

• sheet impedance

-”Effective Internal Impedance”

- hard to calculate exactly

- can be approximated
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Approximation of EII using transmission line 
model

• no unique approximation
• decompose bar into plate and 

triangular sections: effectively 
capture current crowding near the 
edge

• Zeii  of each geometry determined 
by calculating input impedance

Restrictions:
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Surface ribbon method (SRM) in frequency domain

• EII assigned to each ‘ribbon’

• mutuals between ribbons: capture 
external behaviors

• efficiency of SRM: 

- matrix size scales with 
conductor perimeter

- minimum segmentation 
method

Unknowns: MSM-8, SRM-52, VFM-420
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Effects of the frequency dependencies on time 
domain waveform

• line 1 excited with 0.1ns 
rise and fall time

• measured  far end of 
line 4 (length=0.1 m)

• RS= 5 Ohm, CL= 10 pF
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Equivalent circuit modeling for EII: transforming 
frequency domain EII into time domain

• each ‘isolated conductor’ cross-sections 
divided into 4 parts

• each part represented with 1 resistor and 1 
inductor

• rules to determine values of circuit 
elements

- additional constraints: correct DC  
resistance and inductance

- RR and LL are empirically determined 
constants unique to the geometry of the 
conductor
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Time domain conversion using equivalent circuit 
model

• equivalent circuit model

- can be easily constructed

- rational function in s-domain, 
exponential function in time 
domain

- problem size can be reduced 
using Pade approximation: 
dominant pole reduction

- time domain convolution 
problem can be solved using 
recursive properties blue: numerical result

red: circuit model
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Derivation of time domain equation

• frequency domain (s-domain) 
equation

• transformation into time domain

• time domain convolution
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• lossless like equation with 
additional voltage source

• voltage source depends on poles, 
residues, time step, and values from 
previous time step

• different simulators can be used to 
solve equations
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Example I: time stepping solution(FDTD)

• make finite difference approximation to the partial derivatives: extra 
current source compared to lossless case

• each voltage and adjacent current solution point separated by ∆z/2

• ∆t has to be kept small to satisfy stability condition:  may not be 
appropriate for electrically long lines
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Example I: continued

• line 1 excited with 0.1 ns rise and fall 
time trapezoidal waveform

• line length= 0.1m, RS= 5 Ohm, RL= 50 
Ohm

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

V
ol

ta
ge

 a
t F

ar
 E

nd
 o

f A
ct

iv
e 

Li
ne

(V
)

time(nsec)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 1 2 3 4 5 6
V

ol
ta

ge
 a

t f
ar

 e
nd

 a
t l

in
e 

2(
V

)
time(ns)

SRM+FDTD

VFM+FFT

R-L-C

110  µm

20 µm

20 µm

20 µm

10 µm



13

The University of Texas at AustinThe University of Texas at AustinMicro-Electromagnetic Device Group

Sangwoo Kim, EPEP 10/29/97

Using EII for time domain simulation

• frequency domain concept (SRM) can be easily applied to 
time domain using equivalent circuit for EII

• excellent agreement with FFT calculations

• significant decrease in run-times demonstrated

• computation time can be further reduced: run time can be 
comparable to simple R-L-C circuit analysis

- dominant pole approximation

- minimum segmentation

• can easily include dc-to-skin effect behavior directly in 
time domain models


