Micro-sensors - what happens

when you make "classical"

devices "small":

MEMS devices and integrated bolometric IR detectors

Dean P. Neikirk

Department of Electrical and Computer Engineering The University of Texas at Austin

Dean P. Neikirk, http://weewave.mer.utexas.edu

Where are the targets of opportunity for "small" machines?

- actuation?
 - what do you control?: fluid flow, object position
 - motors?
 - optical beam paths?
 - work required only that necessary to move MEMS device itself (doesn't have to do work on the "environment"!)
- sensing?
 - velocity, acceleration, temperature, pressure, distance are main "mechanical state variables"
 - chemical/pathogen sensing
 - mm-wave, sub-mm wave, FIR detection?
- other application domains?
 - optics (see above)? electronics (field emission devices, vacuum microelectronics)?

What do you sense in a MEMS sensor?

- mechanical part of most MEM sensors produce displacement in response to the environmental stimulus
 - how do you sense the mechanical movement?
 - electrical: resistance, capacitance, inductance
 - optical:
 - interference, reflectance, transmittance
- exceptions:
 - "chemFETs," Hall effect and the like (but they are not really MEM
 - devices)
 - thermal device: **bolometers** (a radiation sensor)
 - thermal device: hot wire anemometers, TC pressure gauges, flow gauges
 - chemically-induced optical changes

Micro-Electromagnetic Device Group: Current Research in MEMS-related areas

- optical pressure sensors
 - design and fabrication
- inductive proximity sensors
 - design (sensor and sense/drive circuitry), fabrication, modeling
- microwave to infrared detectors
 - pit vipers and beetles
- chemical sensors
 - collaborative project with chemistry
- microwave/rf transmission line structures
 - impact of finite metal resistance, finite substrate conductivity (e.g., semiconducting substrates) on transmission line loss and dispersion

MEMS example: Optically-interrogated pressure sensors

- why use optical sensing?
 - use in hostile environments
 - immunity from EMI/noise

• Fabry-Perot displacement sensors

- detect via changes in reflectance
 - need absolute displacement!
 - short cavity: g order λ
 - max travel less than periodicity
 - can use lower coherence source
- how to fabricate micromachined version?
 - membrane supports moving mirror
 - design for linearity, sensitivity, yield?

Surface micromachined Fabry-Perot cavity

• use LPCVD to deposit layers

- SiO₂ / Si₃N₄ stacks used for mirrors/membranes
 - layer thicknesses tailor stress and reflectivity
 - 3:1 oxide/nitride thickness ratio for our process
- poly used for sacrificial layer
 - thickness determines gap
- bulk anisotropic etch for optical access
 - -no fusion bonding used

epoxy epoxy Bo Bo Bo Bo Coptical fiber To directional coupler

Dean P. Neikirk, http://weewave.mer.utexas.edu

Fabry-Perot cross section

Si₃N₄ / SiO₂ / Si₃N₄ three layer stacks for mirrors
membranes must remain flat after release!

- -net tensile stress
- -geometry important
 - poly sacrificial layer
 - •etch window for poly removal

Dean P. Neikirk, http://weewave.mer.utexas.edu

Dean P. Neikirk, http://weewave.mer.utexas.edu

Spectral Range of Common

Electromagnetic Detectors

9 MURI bio-IR sensors kick-off 6/16/98

Detector Size Relative to Wavelength

- critical in determining "coupling efficiency"
- much larger than wavelength
 - "classical" absorber
 - detector is its own "antenna"
 - typical figure-of-merit: specific detectivity (D*)
- much smaller than wavelength: "micro-detectors"
 - very poor coupling
 - requires "antenna" structure
 - typical figure-of-merit: Noise Equivalent Power (NEP)
 - $D^* \approx (effective area)^{0.5} / NEP$

Single versus Multi- Mode Antennas

- single mode: use for point sources
 - one antenna, one detector
 - absorbed power: P = kT
 - effective area $\approx \lambda^2$
- multimode: use for distributed sources
 - n-element antenna "array," n detectors
 - P = nkT
 - effective area \approx n λ^2
 - $NEP_{array} = \sqrt{n NEP_{single}}$
- regardless, $\textbf{D^{*}}\approx~\lambda$ / \textbf{NEP}_{single}

Dean P. Neikirk, http://weewave.mer.utexas.edu

Optimum "Resistive" Loads: small detectors

- "detector" area << λ^2
 - behaves like classical "lumped" circuit element: resistor
- "absorption" requires an antenna
- efficiency depends on
 - antenna gain and beam pattern
 - detector/antenna impedance match

Quasi-Optical Detection System

Behavior in IR (1-10 µm)

- antenna-coupled microbolometer
 - requires sub-micron size for lumped model to apply
- conductor losses in antenna
 - use "non-resonant" design: simple bow-tie
- substrate absorption impacts efficiency
 - couples most strongly to radiation incident from high
 - dielectric substrate side of antenna

Dean P. Neikirk, http://weewave.mer.utexas.edu

Trade-offs: Small versus Large Thermal Detectors

- figure of merit improves as responsivity increases
 - NEP = Noise Voltage / Responsivity
- responsivity r (Volts/Watt)

 $r = I_{bias} \cdot \frac{dR}{dT} \cdot \frac{dT}{dP}$

depends on:

- bias current
- "thermometer" sensitivity: resistance change / temperature rise
- thermal impedance: temperature rise / power in
- how do these quantities scale with size?

Dean P. Neikirk, http://weewave.mer.utexas.edu

Optimizing Responsivity: Thermal Impedance

- limiting mechanisms: heat flow from small bodies
 - radiation: negligible
 - conduction: dominant for micron size objects
 - convection: can be significant for > tens of microns
- role of material properties
 - thermal conductivities: leads, bolometer, substrate metal : semiconductor : insulator
 3 : 1 : 0.1 0.01
 - heat capacities 2 : 1.6 : 2 - 1

Dean P. Neikirk, http://weewave.mer.utexas.edu

Optimum "Resistive" Absorbers: large detectors

area >> λ²
"multimode" system
impedance matched sheet

-absorption must be
VERY strong
-requires both resistive
sheet and perfect
mirror

100 % absorption in

resistive sheet at design
wavelength

"Large" Area Bolometer Designs

- can use micromachining to form "free standing" films
 - high thermal resistance still possible
 - if too large will be slow
 - bulk or sacrificial layer processes
- material selection
 - metals
 - skin depth \approx 10nm @ λ_{o} = 5 μm
 - impedance matching requires very thin sheets
 - tens of $\mathbf{A} \approx$ few ohms/square
 - semiconductors
 - below-gap absorption weak
 - free carrier absorption

Free Carrier Absorption in Silicon

Wavelength (μm)

Free Carrier Absorption in Thin Silicon Films

•transfer matrix method used for calculations

-easily handles multiple layers, complex index of refraction
•equivalent to microwave network ABCD matrices

Interference Effects in Moderately Absorbing Films

Dean P. Neikirk, http://weewave.mer.utexas.edu

Impedance Matching using "Backshorts"

Dean P. Neikirk, http://weewave.mer.utexas.edu

0.36 μm Silicon Film with Mirror 1 0.9 reflectance 0.8 А Normalized Power S g incident 0.7 m 0.6 f **2.5** μm F 0.5 ľ Si absorption С 0.4 r 0 0.3 **t = 0.36** μ**m** 0 n 0.2 r 0.1 Ag absorption 0 3 5 6 7 8 10 Wavelength (µm)

Dean P. Neikirk, http://weewave.mer.utexas.edu

Enhanced Absorption using "Resistive" Coating

Classical Devices Made Small

- radiation detection
 - bolometers can be made both fast and sensitive using dimensions at the micron scale
- multi-layer interference effects enhance IR absorption
 - interference effects in micromachined silicon membranes over mirrors can increase effective mid-IR absorption
 - 90 % absorption possible
- multi-layer dielectric stack mirrors / filters
 - can generate wavelength selectivity in "monolithic" form